A338980 Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
0, 1, 184614999414571937405905419562270, 249584763877004334779054488506782340719383629107224173, 245395425663663491880846922641400894840783985813370231599231766603156
Offset: 0
Links
- Robert A. Russell, Table of n, a(n) for n = 0..120
Crossrefs
Programs
-
Mathematica
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*) CoefficientList[2bp[4]/15+bp[6]/5+2bp[8]/15+bp[10]/6+7bp[12]/150+bp[16]/25+bp[20]/180+bp[22]/18+7bp[24]/150+bp[30]/120+bp[32]/25+bp[40]/180+bp[44]/18+bp[60]/7200+bp[62]/16+bp[120]/7200,x]
Formula
A338964(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).
G.f.: 2*bp(4)/15 + bp(6)/5 + 2*bp(8)/15 + bp(10)/6 + 7*bp(12)/150 + bp(16)/25 + bp(20)/180 + bp(22)/18 + 7*bp(24)/150 + bp(30)/120 + bp(32)/25 + bp(40)/180 + bp(44)/18 + bp(60)/7200 + bp(62)/16 + bp(120)/7200, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
Comments