A338993 Triangle read by rows: T(n,k) is the number of k-permutations of {1,...,n} that form a nontrivial arithmetic progression, 1 <= k <= n.
1, 2, 2, 3, 6, 2, 4, 12, 4, 2, 5, 20, 8, 4, 2, 6, 30, 12, 6, 4, 2, 7, 42, 18, 10, 6, 4, 2, 8, 56, 24, 14, 8, 6, 4, 2, 9, 72, 32, 18, 12, 8, 6, 4, 2, 10, 90, 40, 24, 16, 10, 8, 6, 4, 2, 11, 110, 50, 30, 20, 14, 10, 8, 6, 4, 2, 12, 132, 60, 36, 24, 18, 12, 10, 8, 6, 4, 2
Offset: 1
Examples
Triangle T(n,k) begins: n/k 1 2 3 4 5 6 7 8 9 10 11 12 ... 1 1 2 2 2 3 3 6 2 4 4 12 4 2 5 5 20 8 4 2 6 6 30 12 6 4 2 7 7 42 18 10 6 4 2 8 8 56 24 14 8 6 4 2 9 9 72 32 18 12 8 6 4 2 10 10 90 40 24 16 10 8 6 4 2 11 11 111 50 30 20 14 10 8 6 4 2 12 12 132 60 36 24 18 12 10 8 6 4 2 ... For n=4 and k=3 the T(4,3)=4 permutations are 123, 234, 321, and 432.
Links
- M. K. Goh and R. Y. Zhao, Arithmetic subsequences in a random ordering of an additive set, arXiv:2012.12339 [math.CO], 2020.
Crossrefs
Cf. A008279.
Programs
-
Mathematica
T[n_,k_]:=If[k==1, n,Sum[2(n-(k-1)r),{r,Floor[(n-1)/(k-1)]}]]; Flatten[Table[T[n,k],{n,12},{k,n}]] (* Stefano Spezia, Nov 17 2020 *)
-
PARI
T(n,k) = if (k==1, n, sum(r=1, (n-1)\(k-1), 2*(n-(k-1)*r))); \\ Michel Marcus, Sep 08 2021
Formula
T(n,k) = n, if k=1; Sum_{r=1..floor((n-1)/(k-1))} 2*(n-(k-1)*r), if 2 <= k <= n.
T(n,k) = 2*n*f - (k-1)*(f^2 + f), where f = floor((n-1)/(k-1)), for 2 <= k <= n.
Comments