cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338996 Numbers of squares and rectangles of all sizes in 3*n*(n+1)/2-ominoes in form of three-quarters of Aztec diamonds.

Original entry on oeis.org

0, 5, 27, 85, 205, 420, 770, 1302, 2070, 3135, 4565, 6435, 8827, 11830, 15540, 20060, 25500, 31977, 39615, 48545, 58905, 70840, 84502, 100050, 117650, 137475, 159705, 184527, 212135, 242730, 276520
Offset: 0

Views

Author

Luce ETIENNE, Nov 18 2020

Keywords

Examples

			a(1) = 2*3-1 = 5, a(2) = 2*16-5 = 27, a(3) = 2*50-15 = 85, a(4) = 2*120-35 = 205, a(5) = 2*245-70 = 420, a(6) = 2*448-126 = 770.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (2 x + 5)/(1 - x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Dec 12 2020 *)

Formula

G.f.: x*(2*x + 5)/(1 - x)^5.
E.g.f.: exp(x)*x*(120 + 204*x + 76*x^2 + 7*x^3)/24. - Stefano Spezia, Nov 18 2020
a(n) = 5*(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = n*(n + 1)*(n + 2)*(7*n + 13)/24.
a(n) = 2*A004320(n) - A000332(n+3).
a(n) = 2*A000332(n+2) + 5*A000332(n+3).