cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338997 Number of (i,j,k) in {1,2,...,n}^3 such that gcd(n,i) = gcd(n,j) = gcd(n,k).

Original entry on oeis.org

1, 2, 9, 10, 65, 18, 217, 74, 225, 130, 1001, 90, 1729, 434, 585, 586, 4097, 450, 5833, 650, 1953, 2002, 10649, 666, 8065, 3458, 6057, 2170, 21953, 1170, 27001, 4682, 9009, 8194, 14105, 2250, 46657, 11666, 15561, 4810, 64001, 3906, 74089, 10010, 14625, 21298, 97337, 5274, 74305, 16130
Offset: 1

Views

Author

Benoit Cloitre, Dec 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^3 &]; Array[a, 100] (* Amiram Eldar, Dec 31 2020 *)
  • PARI
    a(n)=sumdiv(n,d,eulerphi(d)^3)
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^2); \\ Seiichi Manyama, Mar 13 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^3*x^k/(1-x^k))) \\ Seiichi Manyama, Mar 13 2021

Formula

a(n) = Sum_{d|n} phi(d)^3.
From Seiichi Manyama, Mar 13 2021: (Start)
a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^2.
G.f.: Sum_{k>=1} phi(k)^3 * x^k/(1 - x^k). (End)
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p-1)^2 (p^(3*e)-1))/(p^2 + p + 1).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (Pi^4/360) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.09123656748... . (End)