cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339000 Triangle read by rows: T(n, k) = C(n, k)*Sum_{j=0..n} C(n, k-j)*C(n+j, j)/C(2*j, j).

Original entry on oeis.org

1, 1, 2, 1, 7, 5, 1, 15, 32, 13, 1, 26, 111, 123, 34, 1, 40, 285, 603, 429, 89, 1, 57, 610, 2094, 2748, 1408, 233, 1, 77, 1155, 5845, 12170, 11196, 4437, 610, 1, 100, 2002, 14014, 42355, 60686, 42255, 13587, 1597, 1, 126, 3246, 30030, 124137, 254756, 271961, 150951, 40736, 4181
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 18 2020

Keywords

Examples

			Triangle begins as:
  1;
  1,  2;
  1,  7,   5;
  1, 15,  32,   13;
  1, 26, 111,  123,   34;
  1, 40, 285,  603,  429,   89;
  1, 57, 610, 2094, 2748, 1408, 233;
		

Crossrefs

Cf. A000045 (Fibonacci), A001519, A008459, A046748 (row sums).

Programs

  • Magma
    b:=Binomial;
    A339000:= func< n,k | b(n,k)*(&+[b(n,k-j)*b(n+j,j)/b(2*j,j): j in [0..n]]) >;
    [A339000(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2024
    
  • Mathematica
    T[n_, k_]:= With[{B=Binomial}, B[n,k]*Sum[B[n,k-j]*B[n+j,j]/B[2*j,j], {j,0,n}]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 31 2024 *)
  • Maxima
    T(n,m):=(binomial(n,m))*sum(((binomial(n,m-k))*(binomial(n+k,k)) )/(binomial(2*k,k)),k,0,n);
    
  • SageMath
    b=binomial
    def A339000(n,k): return b(n,k)*sum(b(n,k-j)*b(n+j,j)//b(2*j,j) for j in range(n+1))
    flatten([[A339000(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 31 2024

Formula

G.f.: A008459(x,y)/(1-x*y*A008459(x,y)^2).
T(n,n) = Fibonacci(2*n+1).