A339003 Numbers of the form prime(x) * prime(y) where x and y are distinct and both odd.
10, 22, 34, 46, 55, 62, 82, 85, 94, 115, 118, 134, 146, 155, 166, 187, 194, 205, 206, 218, 235, 253, 254, 274, 295, 298, 314, 334, 335, 341, 358, 365, 382, 391, 394, 415, 422, 451, 454, 466, 482, 485, 514, 515, 517, 527, 538, 545, 554, 566, 614, 626, 635, 649
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 10: {1,3} 187: {5,7} 358: {1,41} 527: {7,11} 22: {1,5} 194: {1,25} 365: {3,21} 538: {1,57} 34: {1,7} 205: {3,13} 382: {1,43} 545: {3,29} 46: {1,9} 206: {1,27} 391: {7,9} 554: {1,59} 55: {3,5} 218: {1,29} 394: {1,45} 566: {1,61} 62: {1,11} 235: {3,15} 415: {3,23} 614: {1,63} 82: {1,13} 253: {5,9} 422: {1,47} 626: {1,65} 85: {3,7} 254: {1,31} 451: {5,13} 635: {3,31} 94: {1,15} 274: {1,33} 454: {1,49} 649: {5,17} 115: {3,9} 295: {3,17} 466: {1,51} 662: {1,67} 118: {1,17} 298: {1,35} 482: {1,53} 685: {3,33} 134: {1,19} 314: {1,37} 485: {3,25} 694: {1,69} 146: {1,21} 334: {1,39} 514: {1,55} 697: {7,13} 155: {3,11} 335: {3,19} 515: {3,27} 706: {1,71} 166: {1,23} 341: {5,11} 517: {5,15} 713: {9,11}
Crossrefs
A338910 is the not necessarily squarefree version.
A339004 is the even instead of odd version.
A005117 lists squarefree numbers.
A300912 lists products of two primes of relatively prime index.
A320656 counts factorizations into squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A339002 lists products of two distinct primes of non-relatively prime index.
A339005 lists products of two distinct primes of divisible index.
Cf. A001221, A001222, A056239, A112798, A166237, A195017, A318990, A320911, A338901, A338903, A338911.
Subsequence of A332822.
Programs
-
Mathematica
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
-
Python
from math import isqrt from sympy import primepi, primerange def A339003(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1) return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
Comments