A338432 Triangle read by rows: T(n, k) = (n - k + 1)^2 + 2*k^2, for n >= 1, and k = 1, 2, ..., n.
3, 6, 9, 11, 12, 19, 18, 17, 22, 33, 27, 24, 27, 36, 51, 38, 33, 34, 41, 54, 73, 51, 44, 43, 48, 59, 76, 99, 66, 57, 54, 57, 66, 81, 102, 129, 83, 72, 67, 68, 75, 88, 107, 132, 163, 102, 89, 82, 81, 86, 97, 114, 137, 166, 201
Offset: 1
Examples
The triangle T(n, k) begins: n \ k 1 2 3 4 5 6 7 8 9 10 11 12 ... 1: 3 2: 6 9 3: 11 12 19 4: 18 17 22 33 5: 27 24 27 36 51 6: 38 33 34 41 54 73 7: 51 44 43 48 59 76 99 8: 66 57 54 57 66 81 102 129 9: 83 72 67 68 75 88 107 132 163 10: 102 89 82 81 86 97 114 137 166 201 11: 123 108 99 96 99 108 123 144 171 204 243 12: 146 129 118 113 114 121 134 153 178 209 246 289 ... ---------------------------------------------------- T(5, 1) = 5^2 + 2*1^2 = 27 = T(5, 3) = 3^2 + 2*3^2. A338433(11) = 2 for A154777(11) = 27. T(4, 4) = 1^2 + 2*4^2 = 33 = T(6, 2) = 5^2 + 2*2^2. A338433(12) = 2 for A154777(12) = 33. T(5, 5) = 1^2 + 2*5^2 = 51 = T(7, 1) = 7^2 + 2*1^2. A338433(20) = 2 for A154777(20) = 51. T(7, 7) = 1^1 - 2*7^2 = 99 = T(11, 3) = 9^2 + 2*3^2 = 99 = T(11, 5) = 7^2 + 2*5^2. A338433(39) = 3 for A154777(39) = 99. The first multiplicity 4 appears for 297.
Crossrefs
Formula
T(n, k) = A(n - k + 1, k), with the array A(m, k) = m^2 + 2*k^2, for n >= 1 and k = 1, 2, ..., n, and 0 otherwise.
G.f. of T and A column k (offset 0): G(k, x) = (1 + x + 2*(1 - x)^2*k^2)/(1-x)^3, for k >= 1.
G.f. of T diagonal m (A row m) (offset 0): D(m, x) = ((2*(1+x) + (1-x)^2*m^2)/(1-x)^3), for m >= 1.
G.f. of row polynomials in x (that is, g.f. of the triangle): G(z,x) = (3 - 3*z + (2 - 6*x + x^2)*z^2 + (2 + x)*x*z^3)*x*z / ((1 - z)*(1 - x*z))^3.
Comments