A339063 Number of unlabeled simple graphs with n edges rooted at two noninterchangeable vertices.
1, 4, 13, 43, 141, 467, 1588, 5544, 19966, 74344, 286395, 1141611, 4707358, 20063872, 88312177, 400980431, 1875954361, 9032585846, 44709095467, 227245218669, 1184822316447, 6330552351751, 34630331194626, 193785391735685, 1108363501628097, 6474568765976164
Offset: 0
Keywords
Examples
The a(1) = 4 cases correspond to a single edge which can be attached to zero, one or both of the roots.
Programs
-
Mathematica
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_, t_] := Product[With[{g = GCD[v[[i]], v[[j]]]}, t[v[[i]]*v[[j]]/ g]^g], {i, 2, Length[v]}, {j, 1, i-1}]*Product[With[{c = v[[i]]}, t[c]^Quotient[c-1, 2]*If[OddQ[c], 1, t[c/2]]], {i, 2, Length[v]}]; G[n_, x_, r_] := Module[{s = 0}, Do[s += permcount[p]*edges[Join[r, p], 1+x^#&], {p, IntegerPartitions[n]}]; s/n!]; seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1, 1}]//CoefficientList[#, x]&]; seq[15] (* Jean-François Alcover, Dec 03 2020, after Andrew Howroyd *)
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))} G(n, x, r)={my(s=0); forpart(p=n, s+=permcount(p)*edges(concat(r, Vec(p)), i->1+x^i)); s/n!} seq(n)={my(A=O(x*x^n)); Vec((G(2*n, x+A, [1, 1])))}