A339098 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of (undirected) cycles on the n X k king graph.
7, 30, 30, 85, 348, 85, 204, 3459, 3459, 204, 451, 33145, 136597, 33145, 451, 954, 316164, 4847163, 4847163, 316164, 954, 1969, 3013590, 171903334, 545217435, 171903334, 3013590, 1969, 4008, 28722567, 6109759868, 61575093671, 61575093671, 6109759868, 28722567, 4008
Offset: 2
Examples
Square array T(n,k) begins: 7, 30, 85, 204, 451, ... 30, 348, 3459, 33145, 316164, ... 85, 3459, 136597, 4847163, 171903334, ... 204, 33145, 4847163, 545217435, 61575093671, ... 451, 316164, 171903334, 61575093671, 21964731190911, ...
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, King Graph
Crossrefs
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_nXk_king_graph(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) if i < k: grids.append((i + (j - 1) * k, i + j * k + 1)) if i > 1: grids.append((i + (j - 1) * k, i + j * k - 1)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) return grids def A339098(n, k): universe = make_nXk_king_graph(n, k) GraphSet.set_universe(universe) cycles = GraphSet.cycles() return cycles.len() print([A339098(j + 2, i - j + 2) for i in range(9 - 1) for j in range(i + 1)])
Formula
T(n,k) = T(k,n).