cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339135 Decimal expansion of J = 2*log(2)/3 - Re(Psi(1/2 + i*sqrt(3)/2)), where Psi is the digamma function and i=sqrt(-1).

Original entry on oeis.org

6, 7, 7, 0, 2, 4, 6, 7, 9, 1, 0, 2, 9, 9, 3, 3, 4, 7, 0, 1, 6, 2, 4, 8, 0, 5, 4, 3, 3, 3, 4, 2, 3, 6, 1, 9, 2, 5, 9, 6, 1, 4, 9, 4, 6, 0, 7, 8, 9, 4, 3, 9, 1, 7, 9, 2, 3, 9, 0, 9, 8, 7, 2, 6, 0, 0, 8, 9, 7, 7, 1, 2, 4, 2, 4, 5, 7, 6, 0, 4, 6, 5, 7, 8, 1, 5, 5, 6, 0, 5, 4, 3, 4, 9, 0, 2, 4, 1, 3, 4, 6, 3, 9, 7, 1, 2, 5, 9, 2
Offset: 0

Views

Author

Artur Jasinski, Nov 25 2020

Keywords

Comments

Generally in the literature there is no explicit formula for the real part of the function Psi(x + i*y) when y != 0.
Up to now there is no explicit formula expressing the constant J in terms of other mathematical constants.

Examples

			J = 0.677024679102993347...
		

Crossrefs

Programs

  • Maple
    evalf(1 + 2*log(2)/3 - Psi(0, 5/2 - sqrt(3)*I/2)/2 - Psi(0, 5/2 + sqrt(3)*I/2)/2, 100); # Vaclav Kotesovec, Nov 26 2020
  • Mathematica
    RealDigits[N[Re[2 Log[2]/3 - PolyGamma[0, 1/2 + I Sqrt[3]/2]], 110]][[1]]
    Chop[N[1 + 2*Log[2]/3 - PolyGamma[0, 5/2 - I*Sqrt[3]/2]/2 - PolyGamma[0, 5/2 + I*Sqrt[3]/2]/2, 120]] (* Vaclav Kotesovec, Nov 26 2020 *)
  • PARI
    2*log(2)/3 - real(psi(1/2 + I*sqrt(3)/2)) \\ Michel Marcus, Nov 25 2020

Formula

J = -log(2)/3 - (1/2)*Pi/cosh(Pi*sqrt(3)/2) - Re(Psi(1/4 + i*sqrt(3)/4)).
J = -log(2)/3 + (1/2)*Pi/cosh(Pi*sqrt(3)/2) - Re(Psi(3/4 + i*sqrt(3)/4)).
J = 3 + gamma + (2/3)*log(2) - (1/2)* sqrt(3)*Pi*tanh(Pi*sqrt(3)/2) - 3*(Sum_{n>=1} zeta(3*n)-1), where zeta is Riemann zeta function and gamma is Euler gamma constant see A001620.
J = -(1/2) + gamma + (2/3)*log(2) + (3/2)*(Sum_{n>=1} zeta(3*n+1)-1).
J = -1 + gamma + (2/3)*log(2) + (1/2)*sqrt(3)*Pi*tanh(Pi*sqrt(3)/2) - 3*(Sum_{n>=0} zeta(3*n+2)-1).
J = -(3/8) + gamma + (2/3)*log(2) + (3/2)*(Sum_{n>=1} zeta(6*n+1)-1).
J = 1/4 + gamma + (2/3)*log(2) - 3*(Sum_{n>=0} zeta(6*n+3)-1).
J = -(1/4) + gamma + (2/3)*log(2) - 3 (Sum_{n>=0} zeta(6*n+5)-1).
J = (11/12 - (1/4)*i*sqrt(3))*Psi(1/2 + i*sqrt(3)/2) + (-(5/4) + (1/4)*i*sqrt(3))*Psi(-(1/2) - i*sqrt(3)/2) + (-(17/24) + (1/8)*i*sqrt(3))* Psi(1/4 + i*sqrt(3)/4) + (3/8 - (1/8)*i*sqrt(3))*Psi(-(1/4) - i*sqrt(3)/4) + (-(17/24) + (1/8)*i*sqrt(3))*Psi(3/4 + i*sqrt(3)/4) + (3/8 - (1/8)*i*sqrt(3))*Psi(-(3/4) - i*sqrt(3)/4).
J = 2*log(2)/3 - Integral_{t=0..infinity} cosh(t)/t - sinh(t)/t - (cos(sqrt(3)*t)*cosh(t/2))/(1 - cosh(t) + sinh(t)) + (cos(sqrt(3)*t)*sinh(t/2))/(1 - cosh(t) + sinh(t)).
J = gamma + (1/6)*Sum_{t>=1} (6*t^3-4*t^2-4*t-1)/(t*(t+1)*(2t+1)*(t^2+t+1)).
Equals 1 + 2*log(2)/3 - Psi(0, 5/2 - i*sqrt(3)/2)/2 - Psi(0, 5/2 + i*sqrt(3)/2)/2. - Vaclav Kotesovec, Nov 26 2020