cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339137 Number of (undirected) cycles in the graph C_4 X P_n.

Original entry on oeis.org

1, 28, 225, 1540, 10217, 67388, 444017, 2925140, 19270105, 126946444, 836290209, 5509263332, 36293601737, 239092863324, 1575081964113, 10376232739316, 68355938510649, 450311249502892, 2966534083948417, 19542759549039748, 128742647137776169, 848123272992954492
Offset: 1

Views

Author

Seiichi Manyama, Nov 25 2020

Keywords

Crossrefs

Cf. A003699 (Hamiltonian cycles), A288637, A339075, A339136, A339140, A339142, A339143.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXPk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339137(n):
        universe = make_CnXPk(4, n)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    print([A339137(n) for n in range(1, 20)])

Formula

Empirical g.f.: -x*(6*x^3+29*x^2-18*x-1) / ((x-1)^2 * (2*x^3+9*x^2-8*x+1)). - Vaclav Kotesovec, Dec 09 2020