A339143
Number of (undirected) cycles in the graph C_6 X P_n.
Original entry on oeis.org
1, 94, 2301, 53644, 1248517, 29059380, 676374187, 15743068612, 366430841199, 8528932801462, 198516848612143, 4620617865735414, 107548097901476485, 2503256858519071030, 58265046263626611537, 1356159518571223920304, 31565557014929042873017
Offset: 1
-
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339143(n):
universe = make_CnXPk(6, n)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A339143(n) for n in range(1, 20)])
A339136
Number of (undirected) cycles in the graph C_3 X P_n.
Original entry on oeis.org
1, 14, 63, 220, 701, 2154, 6523, 19640, 59001, 177094, 531383, 1594260, 4782901, 14348834, 43046643, 129140080, 387420401, 1162261374, 3486784303, 10460353100, 31381059501, 94143178714, 282429536363, 847288609320, 2541865828201, 7625597484854, 22876792454823, 68630377364740
Offset: 1
-
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339136(n):
universe = make_CnXPk(3, n)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A339136(n) for n in range(1, 20)])
A339137
Number of (undirected) cycles in the graph C_4 X P_n.
Original entry on oeis.org
1, 28, 225, 1540, 10217, 67388, 444017, 2925140, 19270105, 126946444, 836290209, 5509263332, 36293601737, 239092863324, 1575081964113, 10376232739316, 68355938510649, 450311249502892, 2966534083948417, 19542759549039748, 128742647137776169, 848123272992954492
Offset: 1
-
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339137(n):
universe = make_CnXPk(4, n)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A339137(n) for n in range(1, 20)])
A339142
Number of (undirected) cycles in the graph C_5 X P_n.
Original entry on oeis.org
1, 52, 733, 9394, 119235, 1512196, 19177677, 243212478, 3084441599, 39117172360, 496087629441, 6291429718962, 79788500460003, 1011885230273244, 12832823194696645, 162747064808635206, 2063973507784856167, 26175505197898511728, 331960206747350288969, 4209950410912939269210
Offset: 1
-
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339142(n):
universe = make_CnXPk(5, n)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A339142(n) for n in range(1, 9)])
More terms from
Ed Wynn, Jun 28 2023
Showing 1-4 of 4 results.