A339159
Number of achiral series-parallel networks with n elements.
Original entry on oeis.org
1, 2, 3, 7, 12, 29, 54, 130, 258, 616, 1274, 3030, 6458, 15287, 33335, 78694, 174587, 411469, 925246, 2179010, 4952389, 11662221, 26733827, 62980863, 145385388, 342766624, 795810810, 1878109984, 4381423357, 10352044123, 24247955489, 57362089607
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 3: (ooo), (o|oo), (o|o|o), (o|ooo), (oo|oo), (o|o|oo), (o|o|o|o).
a(4) = 7: (oooo), ((o|o)(o|o)), (o(o|o)o).
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+t-x+O(x*x^n))}
A339158
Number of essentially parallel achiral series-parallel networks with n elements.
Original entry on oeis.org
1, 1, 2, 4, 8, 18, 37, 84, 180, 413, 902, 2084, 4628, 10726, 24128, 56085, 127421, 296955, 680092, 1588665, 3662439, 8574262, 19875081, 46628789, 108584460, 255264307, 596774173, 1405626896, 3297314994, 7780687159, 18305763571, 43271547808, 102069399803
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (o|o).
a(3) = 2: (o|oo).
a(4) = 4: (o|ooo), (oo|oo), (o|o|oo), (o|o|o|o).
a(5) = 8: (o|oooo), (o|(o|o)(o|o)), (o|o(o|o)o), (oo|ooo), (o|o|ooo), (o|oo|oo), (o|o|o|oo), (o|o|o|o|o).
a(6) = 16 includes (o(o|o)|(o|o)o) which is the first example of a network that is achiral but does not have reflective symmetry when embedded in the plane as shown below (edges correspond to elements):
A
/ \\
o o --- No reflective symmetry ---
\\ /
Z
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, my(t=x + q*(1 + p)); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+O(x*x^n))}
A339291
Number of essentially series achiral series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
0, 1, 1, 1, 2, 4, 6, 13, 21, 44, 76, 158, 281, 584, 1067, 2211, 4131, 8535, 16231, 33481, 64594, 133067, 259821, 534869, 1054751, 2170736, 4316320, 8884035, 17788985, 36627593, 73776883, 151996070, 307705669, 634411061, 1289890551, 2661708319
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 1: (oooo).
a(5) = 2: (ooooo), (o(o|oo)o).
a(6) = 4: (oooooo), ((o|oo)(o|oo)), (o(o|ooo)o), (o(oo|oo)o).
-
\\ here B(n) gives A339290 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=O(x^2)); forstep(n=2, n, 2, p=q*(1 + Z + (1 + Z)*x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2, 1-n))) - p)); Vec(p+O(x*x^n), -n)}
A339294
Number of essentially series unoriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
0, 1, 1, 2, 5, 13, 35, 101, 299, 916, 2859, 9087, 29247, 95188, 312490, 1033715, 3441280, 11520726, 38758234, 130962986, 444251957, 1512321767, 5164750890, 17689837577, 60752024243, 209154519704, 721707099632, 2495565928527, 8646220929912, 30010588561120
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 2: (oooo), (o(o|oo)).
a(5) = 5: (ooooo), (oo(o|oo)), (o(o|oo)o), (o(o|ooo)), (o(oo|oo)).
-
\\ here B(n) gives A339290 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=O(x^2)); forstep(n=2, n, 2, p=q*(1 + Z + (1 + Z)*x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2, 1-n))) - p)); my(t=B(n, Z)); Vec(p + t - t/(1+t), -n)/2}
A339223
Number of essentially series unoriented series-parallel networks with n elements.
Original entry on oeis.org
1, 1, 2, 6, 17, 57, 196, 723, 2729, 10638, 42161, 169912, 692703, 2853523, 11852644, 49592966, 208800209, 883970867, 3760605627, 16068272965, 68925340187, 296705390322, 1281351319402, 5549911448062, 24103086681839, 104938476264310, 457920147387969, 2002462084788769
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo), (o|o).
a(3) = 2: (ooo), (o(o|o)).
a(4) = 6: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)).
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, p = x + q*(1 + x + x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2))) - p)); Vec(p+x+subst(x^2/(1+x),x,B(n)))/2}
Showing 1-5 of 5 results.
Comments