cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A339225 Number of unoriented series-parallel networks with n elements.

Original entry on oeis.org

1, 2, 4, 11, 30, 98, 328, 1193, 4459, 17287, 68283, 274726, 1118960, 4607578, 19135274, 80063095, 337104367, 1427274619, 6072510001, 25949049372, 111319539096, 479243000380, 2069825207344, 8965693829582, 38940393808337, 169546919220357, 739895248735963
Offset: 1

Views

Author

Andrew Howroyd, Nov 27 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of distinct series or parallel configurations with n unit elements modulo reversing the order of all series configurations.

Examples

			In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 4: (ooo), (o(o|o)), (o|o|o), (o|oo).
a(4) = 11: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)),  (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
		

Crossrefs

Cf. A000084, A003430 (oriented), A339159 (achiral), A339223, A339224.

Programs

  • PARI
    \\ here B(n) gives A003430 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
    seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+t-x+B(n))/2}

Formula

a(n) = (A003430(n) + A339159(n))/2.
a(n) = A339223(n) + A339224(n) for n > 1.
A000084(n) <= a(n) <= A003430(n).

A339157 Number of essentially series achiral series-parallel networks with n elements.

Original entry on oeis.org

1, 1, 1, 3, 4, 11, 17, 46, 78, 203, 372, 946, 1830, 4561, 9207, 22609, 47166, 114514, 245154, 590345, 1289950, 3087959, 6858746, 16352074, 36800928, 87502317, 199036637, 472483088, 1084108363, 2571356964, 5942191918, 14090541799, 32754720101, 77684033014, 181473276607
Offset: 1

Views

Author

Andrew Howroyd, Nov 27 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of series configurations with n unit elements that are invariant under the reversal of all contained series configurations.

Examples

			In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 3: (oooo), ((o|o)(o|o)), (o(o|o)o).
a(5) = 4: (ooooo), ((o|o)o(o|o)), (o(o|oo)o), (o(o|o|o)o).
a(6) = 11: (oooooo), ((o|o)oo(o|o)), (o(o|o)(o|o)o), ((o|oo)(o|oo)), ((o|o|o)(o|o|o)), (oo(o|o)oo), ((o|o)(o|o)(o|o)), (o(o|ooo)o), (o(oo|oo)o), (o(o|o|oo)o), (o(o|o|o|o)o).
		

Crossrefs

Cf. A003430, A007453 (oriented), A339158, A339159, A339223 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A003430 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
    seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, p = x + q*(1 + x + x*Ser(EulerT(Vec(p+(s-subst(p,x,x^2))/2))) - p)); Vec(p+O(x*x^n))}

Formula

G.f.: x + (1 + P(x))*B(x^2) where P(x) is the g.f. of A339158 and B(x) is the g.f. of A003430.

A339224 Number of essentially parallel unoriented series-parallel networks with n elements.

Original entry on oeis.org

1, 1, 2, 5, 13, 41, 132, 470, 1730, 6649, 26122, 104814, 426257, 1754055, 7282630, 30470129, 128304158, 543303752, 2311904374, 9880776407, 42394198909, 182537610058, 788473887942, 3415782381520, 14837307126498, 64608442956047, 281975101347994, 1233237605651194
Offset: 1

Views

Author

Andrew Howroyd, Nov 27 2020

Keywords

Comments

See A339225 for additional details.

Examples

			In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo), (o|o).
a(3) = 2: (o|o|o), (o|oo).
a(4) = 5: (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
		

Crossrefs

Cf. A003430, A007454 (oriented), A339158 (achiral), A339223, A339225.

Programs

  • PARI
    \\ here B(n) gives A003430 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
    seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, my(t=x + q*(1 + p)); p=x + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+subst(x/(1+x), x, B(n)))/2}

Formula

a(n) = (A007454(n) + A339158(n))/2.
Showing 1-3 of 3 results.