cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339177 a(n) is the number of arrangements on n pseudocircles which are NonKrupp-packed.

Original entry on oeis.org

1, 3, 46, 3453, 784504
Offset: 3

Views

Author

Manfred Scheucher, Nov 26 2020

Keywords

Comments

An arrangement of pseudocircles is a collection of simple closed curves on the sphere which intersect at most twice.
In a NonKrupp-packed arrangement every pair of pseudocircles intersects in two proper crossings, no three pseudocircles intersect in a common points, and in every subarrangement of three pseudocircles there exist digons, i.e. faces bounded only by two of the pseudocircles.

Crossrefs

Cf. A296406 (number of arrangements on pairwise intersecting pseudocircles).
Cf. A006248 (number of arrangements on pseudocircles which are Krupp-packed, i.e., arrangements on pseudo-greatcircles).
Cf. A018242 (number of arrangements on circles which are Krupp-packed, i.e., arrangements on greatcircles).