A339195 Triangle of squarefree numbers grouped by greatest prime factor, read by rows.
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 66, 77, 110, 154, 165, 231, 330, 385, 462, 770, 1155, 2310, 13, 26, 39, 65, 78, 91, 130, 143, 182, 195, 273, 286, 390, 429, 455, 546, 715, 858, 910, 1001, 1365, 1430, 2002, 2145, 2730, 3003, 4290, 5005, 6006, 10010, 15015, 30030
Offset: 0
Examples
Triangle begins: 1 2 3 6 5 10 15 30 7 14 21 35 42 70 105 210
Links
- Alois P. Heinz, Rows n = 0..14, flattened
- Michael De Vlieger, Plot p | a(n) at (x,y) = (n,pi(p)), n = 0..2047, 12X vertical exaggeration.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color function related to the order of a(n) in A019565.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color function showing 1 in gray, primes in red, primorials in bright green, even squarefree semiprimes in yellow, odd squarefree semiprimes in light green, thereafter, progressively deeper green related to omega(a(n)) = m until m >= 6.
Crossrefs
A011782 gives row lengths.
A339360 gives row sums.
A008578 (shifted) is column k = 1.
A100484 is column k = 2.
A001748 is column k = 3.
A002110 is column k = 2^(n-1).
A070826 is column k = 2^(n-1) - 1.
A209862 takes prime indices to binary indices in these terms.
A006881 lists squarefree semiprimes.
A072047 counts prime factors of squarefree numbers.
A319246 is the sum of prime indices of the n-th squarefree number.
Cf. A379746.
Programs
-
Maple
T:= proc(n) option remember; `if`(n=0, 1, (p-> map( x-> x*p, {seq(T(i), i=0..n-1)})[])(ithprime(n))) end: seq(T(n), n=0..6); # Alois P. Heinz, Jan 08 2025
-
Mathematica
Table[Prime[n]*Sort[Times@@Prime/@#&/@Subsets[Range[n-1]]],{n,5}]
Formula
For n > 1, T(n,k) = prime(n) * A261144(n-1,k).
Extensions
Row n=0 (term 1) prepended by Alois P. Heinz, Jan 08 2025
Comments