cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339197 Number of (undirected) cycles on the n X 3 king graph.

Original entry on oeis.org

30, 348, 3459, 33145, 316164, 3013590, 28722567, 273751765, 2609096478, 24866992602, 237004387635, 2258860992595, 21528938911842, 205189789087374, 1955639788756293, 18638973217791295, 177645865363829526, 1693121885638023396, 16136945905019298321, 153799336805212613275
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2020

Keywords

Crossrefs

Column 3 of A339098.
Cf. A339200.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339098(n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    def A339197(n):
        return A339098(n, 3)
    print([A339197(n) for n in range(2, 30)])

Formula

Empirical g.f.: -x^2 * (11*x^4 + 49*x^3 + 69*x^2 + 48*x + 30) / ((x-1)^2 * (6*x^4 + 5*x^3 + 14*x^2 + 8*x - 1)). - Vaclav Kotesovec, Dec 09 2020