cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339200 Number of (undirected) Hamiltonian cycles on the n X 3 king graph.

Original entry on oeis.org

4, 16, 120, 744, 4922, 31904, 208118, 1354872, 8826022, 57483536, 374412158, 2438639080, 15883563110, 103454037120, 673825180718, 4388811619032, 28585557862518, 186185731404016, 1212679737590398, 7898522254036168, 51445284278407878, 335077523213321312, 2182453613487235150, 14214930709900240312
Offset: 2

Views

Author

Seiichi Manyama, Nov 27 2020

Keywords

Crossrefs

Column 3 of A339190.
Cf. A339197.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A339190(n, k):
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles(is_hamilton=True)
        return cycles.len()
    def A339200(n):
        return A339190(n, 3)
    print([A339200(n) for n in range(2, 20)])

Formula

Empirical g.f.: 2*x^2 * (3*x^4 + 4*x^3 + 2*x^2 - 2) / (6*x^4 + 8*x^3 + 15*x^2 + 4*x - 1). - Vaclav Kotesovec, Dec 09 2020