A339200 Number of (undirected) Hamiltonian cycles on the n X 3 king graph.
4, 16, 120, 744, 4922, 31904, 208118, 1354872, 8826022, 57483536, 374412158, 2438639080, 15883563110, 103454037120, 673825180718, 4388811619032, 28585557862518, 186185731404016, 1212679737590398, 7898522254036168, 51445284278407878, 335077523213321312, 2182453613487235150, 14214930709900240312
Offset: 2
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 2..1000
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Eric Weisstein's World of Mathematics, King Graph
- Index entries for sequences related to graphs, Hamiltonian
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_nXk_king_graph(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) if i < k: grids.append((i + (j - 1) * k, i + j * k + 1)) if i > 1: grids.append((i + (j - 1) * k, i + j * k - 1)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) return grids def A339190(n, k): universe = make_nXk_king_graph(n, k) GraphSet.set_universe(universe) cycles = GraphSet.cycles(is_hamilton=True) return cycles.len() def A339200(n): return A339190(n, 3) print([A339200(n) for n in range(2, 20)])
Formula
Empirical g.f.: 2*x^2 * (3*x^4 + 4*x^3 + 2*x^2 - 2) / (6*x^4 + 8*x^3 + 15*x^2 + 4*x - 1). - Vaclav Kotesovec, Dec 09 2020