A339228 Triangle read by rows: T(n,k) is the number of oriented series-parallel networks with n colored elements using exactly k colors.
1, 2, 3, 5, 22, 19, 15, 146, 321, 195, 48, 970, 4116, 5972, 2791, 167, 6601, 48245, 125778, 135235, 51303, 602, 46012, 546570, 2281528, 4238415, 3609966, 1152019, 2256, 328188, 6118320, 38437972, 109815445, 157612413, 111006329, 30564075
Offset: 1
Examples
Triangle begins: 1; 2, 3; 5, 22, 19; 15, 146, 321, 195; 48, 970, 4116, 5972, 2791; 167, 6601, 48245, 125778, 135235, 51303; 602, 46012, 546570, 2281528, 4238415, 3609966, 1152019; ...
Crossrefs
Programs
-
PARI
\\ R(n,k) gives colorings using at most k colors as a vector. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n,k)={my(Z=k*x, p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); Vec(p)} M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))} {my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}
Comments