A003430
Number of unlabeled series-parallel posets (i.e., generated by unions and sums) with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 15, 48, 167, 602, 2256, 8660, 33958, 135292, 546422, 2231462, 9199869, 38237213, 160047496, 674034147, 2854137769, 12144094756, 51895919734, 222634125803, 958474338539, 4139623680861, 17931324678301, 77880642231286, 339093495674090, 1479789701661116
Offset: 0
From _Andrew Howroyd_, Nov 26 2020: (Start)
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 5: (ooo), (o(o|o)), ((o|o)o), (o|o|o), (o|oo).
a(4) = 15: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)oo), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), ((o|oo)o), ((o|o|o)o), (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)), (o|(o|o)o).
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39 (which deals with the labeled case of the same sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 1..100 from Jean-François Alcover)
- B. I. Bayoumi, M. H. El-Zahar and S. M. Khamis, Asymptotic enumeration of N-free partial orders, Order 6 (1989), 219-232.
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Uli Fahrenberg, Christian Johansen, Georg Struth, Ratan Bahadur Thapa, Generating Posets Beyond N, arXiv:1910.06162 [cs.FL], 2019.
- Frédéric Fauvet, L. Foissy, D. Manchon, Operads of finite posets, arXiv preprint arXiv:1604.08149 [math.CO], 2016.
- S. R. Finch, Series-parallel networks
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 72.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299. Math. Rev. 50 #4416.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- Index entries for sequences related to posets
-
terms = 25; A[] = 1; Do[A[x] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jun 29 2011, updated Jan 12 2018 *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x, 1-n)))); Vec(p)} \\ Andrew Howroyd, Nov 27 2020
A339282
Triangle read by rows: T(n,k) is the number of unoriented series-parallel networks with n colored elements using exactly k colors.
Original entry on oeis.org
1, 2, 2, 4, 14, 10, 11, 84, 168, 98, 30, 522, 2109, 3004, 1396, 98, 3426, 24397, 63094, 67660, 25652, 328, 23404, 274626, 1142420, 2119985, 1805082, 576010, 1193, 165417, 3065376, 19230320, 54916745, 78809079, 55503392, 15282038, 4459, 1197934, 34201068, 311157620, 1283360335, 2761083930, 3220245007, 1932118328, 467747416
Offset: 1
Triangle begins:
1;
2, 2;
4, 14, 10;
11, 84, 168, 98;
30, 522, 2109, 3004, 1396;
98, 3426, 24397, 63094, 67660, 25652;
328, 23404, 274626, 1142420, 2119985, 1805082, 576010;
...
-
\\ R(n, k) gives colorings using at most k colors as a vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, Z)={my(p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); p}
R(n,k)={my(Z=k*x, q=subst(B((n+1)\2, Z), x, x^2), s=subst(Z,x,x^2)+q^2/(1+q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(1 + p); p=Z + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+t-Z+B(n,Z))/2}
M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}
A339229
Number of oriented series-parallel networks with n integer valued elements spanning an initial interval of positive integers.
Original entry on oeis.org
1, 5, 46, 677, 13897, 367329, 11875112, 453884998, 20021744482, 1001103144204, 55950350379398, 3456387167052662, 233868854544617505, 17200896572547662922, 1366363690436820691346, 116580486267706011046208, 10633034275200701222560393, 1032398637197381396948606128
Offset: 1
In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 5: (11), (12), (21), (1|1), (1|2).
-
\\ See A339228 for R(n,k).
seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )}
A339226
Number of oriented series-parallel networks with n elements of 2 colors.
Original entry on oeis.org
2, 7, 32, 176, 1066, 6935, 47216, 332700, 2404818, 17734668, 132901644, 1009161505, 7747608480, 60037905076, 468987635982, 3689066578347, 29195587558726, 232303316402615, 1857264782113562, 14912673794505898, 120203145484455930, 972291038495626309
Offset: 1
In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 2: (1), (2).
a(2) = 7: (11), (12), (21), (22), (1|1), (1|2), (2|2).
A339227
Number of oriented series-parallel networks with n colored elements using exactly 2 colors.
Original entry on oeis.org
0, 3, 22, 146, 970, 6601, 46012, 328188, 2387498, 17666752, 132631060, 1008068661, 7743145556, 60019505338, 468911161556, 3688746483355, 29194239490432, 232297608127077, 1857240493924050, 14912570002666430, 120202700216204324, 972289121546949231
Offset: 1
In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(2) = 3: (12), (21), (22), (1|2).
a(3) = 22: (112), (121), (122), (211), (212), (221), (1(1|2)), (1(2|2)), (2(1|1)), (2(1|2)), ((1|1)2), ((1|2)1), ((1|2)2), ((2|2)1), (1|12), (1|21), (1|22), (2|21), (11|2), (12|2), (1|1|2), (1|2|2).
A339231
Triangle read by rows: T(n,k) is the number of oriented series-parallel networks whose multigraph has n edges and k interior vertices, 0 <= k < n.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 23, 13, 1, 1, 15, 59, 69, 22, 1, 1, 21, 124, 249, 172, 34, 1, 1, 28, 234, 711, 853, 378, 50, 1, 1, 36, 402, 1733, 3175, 2487, 755, 70, 1, 1, 45, 650, 3755, 9767, 11813, 6431, 1400, 95, 1, 1, 55, 995, 7443, 26043, 44926, 38160, 15098, 2445, 125, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 7, 1;
1, 10, 23, 13, 1;
1, 15, 59, 69, 22, 1;
1, 21, 124, 249, 172, 34, 1;
1, 28, 234, 711, 853, 378, 50, 1;
...
In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
T(4,0) = 1: (o|o|o|o).
T(4,1) = 6: ((o|o)(o|o)), (o(o|o|o)), ((o|o|o)o), (o|o|oo), (o|o(o|o)), (o|(o|o)o).
T(4,2) = 7: (oo(o|o)), (o(o|o)o), ((o|o)oo), (o(o|oo)), ((o|oo)o), (oo|oo), (o|ooo).
T(4,3) = 1: (oooo).
The graph of (oo(o|o)) has 4 edges (elements) and 2 interior vertices as shown below:
A---o---o===Z (where === is a double edge).
-
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, [v^i|v<-vars])/i ))-1)}
VertexWeighted(n, W)={my(Z=x, p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerMT(Vec(W*p^2/(1 + W*p) + Z)))); Vec(p)}
T(n)={[Vecrev(p)|p<-VertexWeighted(n,y)]}
{ my(A=T(12)); for(n=1, #A, print(A[n])) }
A339230
Number of oriented series-parallel networks with integer valued elements summing to n.
Original entry on oeis.org
1, 3, 9, 32, 120, 490, 2077, 9158, 41401, 191232, 897849, 4273794, 20573696, 99994830, 490000756, 2418246995, 12008813611, 59962351145, 300864703306, 1516196518032, 7670827035223, 38946578808655, 198379559337073, 1013452414823740, 5191372465942866, 26658747310696437
Offset: 1
In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 3: (2), (11), (1|1).
a(3) = 9: (3), (12), (21), (1(1|1)), ((1|1)1), (111), (1|2), (1|11), (1|1|1).
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
EdgeWeightedT(u)={my(Z=x*Ser(u)); my(p=Z+O(x^2)); for(n=2, #u, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); Vec(p)}
seq(n)={EdgeWeightedT(vector(n,i,1))}
A339297
Triangle read by rows: T(n,k) is the number of oriented series-parallel networks with n colored elements and without multiple unit elements in parallel using exactly k colors.
Original entry on oeis.org
1, 1, 2, 2, 12, 12, 5, 64, 162, 108, 13, 354, 1734, 2760, 1380, 36, 1992, 16977, 48716, 56100, 22440, 103, 11538, 161691, 746316, 1488240, 1338120, 446040, 306, 68427, 1524969, 10652086, 32760180, 49718640, 36614760, 10461360, 930, 414294, 14382720, 146464740, 652517010, 1487453760, 1816345440, 1131883200, 282970800
Offset: 1
Triangle begins:
1;
1, 2;
2, 12, 12;
5, 64, 162, 108;
13, 354, 1734, 2760, 1380;
36, 1992, 16977, 48716, 56100, 22440;
103, 11538, 161691, 746316, 1488240, 1338120, 446040;
...
-
\\ R(n, k) gives colorings using at most k colors as a vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(Z=k*x, p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}
M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}
A339233
Number of inequivalent colorings of oriented series-parallel networks with n colored elements.
Original entry on oeis.org
1, 4, 21, 165, 1609, 19236, 266251, 4175367, 72705802, 1387084926, 28689560868, 638068960017, 15158039092293, 382527449091778, 10207466648995608, 286876818184163613, 8462814670769394769, 261266723355912507073, 8419093340955799898258, 282519424041100564770142
Offset: 1
In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 4: (11), (12), (1|1), (1|2).
a(3) = 21: (111), (112), (121), (122), (123), (1(1|1)), (1(1|2)), (1(2|2)), (1(2|3)), ((1|1)1), ((1|1)2), ((1|2)1), ((1|2)3), (1|1|1), (1|1|2), (1|2|3), (1|11), (1|12), (1|21), (1|22), (1|23).
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(Z=x*sv(1), p=Z+O(x^2)); for(n=2, n, p=sEulerT(p^2/(1+p) + Z)-1); p}
InequivalentColoringsSeq(cycleIndexSeries(15))
Showing 1-9 of 9 results.
Comments