cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003430 Number of unlabeled series-parallel posets (i.e., generated by unions and sums) with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 167, 602, 2256, 8660, 33958, 135292, 546422, 2231462, 9199869, 38237213, 160047496, 674034147, 2854137769, 12144094756, 51895919734, 222634125803, 958474338539, 4139623680861, 17931324678301, 77880642231286, 339093495674090, 1479789701661116
Offset: 0

Views

Author

Keywords

Comments

Number of oriented series-parallel networks with n elements. A series configuration is a unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is a unit element or a multiset of two or more series configurations. a(n) is the number of series or parallel configurations with n elements. The sequences A007453 and A007454 enumerate respectively series and parallel configurations. - Andrew Howroyd, Dec 01 2020

Examples

			From _Andrew Howroyd_, Nov 26 2020: (Start)
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 5: (ooo), (o(o|o)), ((o|o)o), (o|o|o), (o|oo).
a(4) = 15: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)oo), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), ((o|oo)o), ((o|o|o)o), (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)), (o|(o|o)o).
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39 (which deals with the labeled case of the same sequence).

Crossrefs

Row sums of A339231.
Column k=1 of A339228.
Cf. A000084, A003431, A048172 (labeled N-free posets), A007453, A007454, A339156, A339159, A339225.

Programs

  • Mathematica
    terms = 25; A[] = 1; Do[A[x] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
    CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jun 29 2011, updated Jan 12 2018 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x, 1-n)))); Vec(p)} \\ Andrew Howroyd, Nov 27 2020

Formula

G.f. A(x) = 1 + x + 2*x^2 + 5*x^3 + ... satisfies A(x) = exp(Sum_{k>=1} (1/k)*(A(x^k) + 1/A(x^k) - 2 + x^k)).
From: Andrew Howroyd, Nov 26 2020: (Start)
a(n) = A007453(n) + A007454(n) for n > 1.
Euler transform of A007453.
G.f.: P(x)/(1 - P(x)) where P(x) is the g.f. of A007454.
(End)

Extensions

Name corrected by Salah Uddin Mohammad, Jun 07 2020
a(0)=1 prepended (using the g.f.) by Alois P. Heinz, Dec 01 2020

A339282 Triangle read by rows: T(n,k) is the number of unoriented series-parallel networks with n colored elements using exactly k colors.

Original entry on oeis.org

1, 2, 2, 4, 14, 10, 11, 84, 168, 98, 30, 522, 2109, 3004, 1396, 98, 3426, 24397, 63094, 67660, 25652, 328, 23404, 274626, 1142420, 2119985, 1805082, 576010, 1193, 165417, 3065376, 19230320, 54916745, 78809079, 55503392, 15282038, 4459, 1197934, 34201068, 311157620, 1283360335, 2761083930, 3220245007, 1932118328, 467747416
Offset: 1

Views

Author

Andrew Howroyd, Nov 30 2020

Keywords

Comments

Unoriented version of A339228. Equivalence is up to reversal of all parts combined in series.

Examples

			Triangle begins:
    1;
    2,     2;
    4,    14,     10;
   11,    84,    168,      98;
   30,   522,   2109,    3004,    1396;
   98,  3426,  24397,   63094,   67660,   25652;
  328, 23404, 274626, 1142420, 2119985, 1805082, 576010;
  ...
		

Crossrefs

Columns 1..2 are A339225, A339281.
Row sums are A339283.

Programs

  • PARI
    \\ R(n, k) gives colorings using at most k colors as a vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z)={my(p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); p}
    R(n,k)={my(Z=k*x, q=subst(B((n+1)\2, Z), x, x^2), s=subst(Z,x,x^2)+q^2/(1+q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(1 + p); p=Z + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+t-Z+B(n,Z))/2}
    M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
    {my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}

A339229 Number of oriented series-parallel networks with n integer valued elements spanning an initial interval of positive integers.

Original entry on oeis.org

1, 5, 46, 677, 13897, 367329, 11875112, 453884998, 20021744482, 1001103144204, 55950350379398, 3456387167052662, 233868854544617505, 17200896572547662922, 1366363690436820691346, 116580486267706011046208, 10633034275200701222560393, 1032398637197381396948606128
Offset: 1

Views

Author

Andrew Howroyd, Nov 28 2020

Keywords

Comments

See A339228 for additional details.

Examples

			In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 5: (11), (12), (21), (1|1), (1|2).
		

Crossrefs

Row sums of A339228.

Programs

  • PARI
    \\ See A339228 for R(n,k).
    seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )}

A339226 Number of oriented series-parallel networks with n elements of 2 colors.

Original entry on oeis.org

2, 7, 32, 176, 1066, 6935, 47216, 332700, 2404818, 17734668, 132901644, 1009161505, 7747608480, 60037905076, 468987635982, 3689066578347, 29195587558726, 232303316402615, 1857264782113562, 14912673794505898, 120203145484455930, 972291038495626309
Offset: 1

Views

Author

Andrew Howroyd, Nov 28 2020

Keywords

Comments

See A339228 for additional details.

Examples

			In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 2: (1), (2).
a(2) = 7: (11), (12), (21), (22), (1|1), (1|2), (2|2).
		

Crossrefs

Programs

  • PARI
    \\ See A339228 for R(n,k).
    seq(n) = {R(n,2)}

A339227 Number of oriented series-parallel networks with n colored elements using exactly 2 colors.

Original entry on oeis.org

0, 3, 22, 146, 970, 6601, 46012, 328188, 2387498, 17666752, 132631060, 1008068661, 7743145556, 60019505338, 468911161556, 3688746483355, 29194239490432, 232297608127077, 1857240493924050, 14912570002666430, 120202700216204324, 972289121546949231
Offset: 1

Views

Author

Andrew Howroyd, Nov 28 2020

Keywords

Comments

See A339228 for additional details.

Examples

			In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(2) = 3: (12), (21), (22), (1|2).
a(3) = 22: (112), (121), (122), (211), (212), (221), (1(1|2)), (1(2|2)), (2(1|1)), (2(1|2)), ((1|1)2), ((1|2)1), ((1|2)2), ((2|2)1), (1|12), (1|21), (1|22), (2|21), (11|2), (12|2), (1|1|2), (1|2|2).
		

Crossrefs

Column k=2 of A339228.

Programs

  • PARI
    \\ See A339228 for R(n,k).
    seq(n) = {R(n,2) - 2*R(n,1)}

Formula

a(n) = A339226(n) - 2*A003430(n).

A339231 Triangle read by rows: T(n,k) is the number of oriented series-parallel networks whose multigraph has n edges and k interior vertices, 0 <= k < n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 23, 13, 1, 1, 15, 59, 69, 22, 1, 1, 21, 124, 249, 172, 34, 1, 1, 28, 234, 711, 853, 378, 50, 1, 1, 36, 402, 1733, 3175, 2487, 755, 70, 1, 1, 45, 650, 3755, 9767, 11813, 6431, 1400, 95, 1, 1, 55, 995, 7443, 26043, 44926, 38160, 15098, 2445, 125, 1
Offset: 1

Views

Author

Andrew Howroyd, Nov 29 2020

Keywords

Comments

A series configuration is a unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is a unit element or a multiset of two or more series configurations. T(n, k) is the number of series or parallel configurations with n unit elements whose representation as a multigraph has k interior vertices, with elements corresponding to edges. Parallel configurations do not increase the interior vertex count and series configurations increase it by one less than the number of parts.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   7,   1;
  1, 10,  23,  13,   1;
  1, 15,  59,  69,  22,   1;
  1, 21, 124, 249, 172,  34,  1;
  1, 28, 234, 711, 853, 378, 50, 1;
  ...
In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
T(4,0) = 1: (o|o|o|o).
T(4,1) = 6: ((o|o)(o|o)), (o(o|o|o)), ((o|o|o)o), (o|o|oo), (o|o(o|o)), (o|(o|o)o).
T(4,2) = 7: (oo(o|o)), (o(o|o)o), ((o|o)oo),  (o(o|oo)), ((o|oo)o),  (oo|oo), (o|ooo).
T(4,3) = 1: (oooo).
The graph of (oo(o|o)) has 4 edges (elements) and 2 interior vertices as shown below:
      A---o---o===Z (where === is a double edge).
		

Crossrefs

Row sums are A003430.

Programs

  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, [v^i|v<-vars])/i ))-1)}
    VertexWeighted(n, W)={my(Z=x, p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerMT(Vec(W*p^2/(1 + W*p) + Z)))); Vec(p)}
    T(n)={[Vecrev(p)|p<-VertexWeighted(n,y)]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) }

Formula

T(n,0) = T(n,n-1) = 1.
T(n,1) = binomial(n,2).
T(n+2,n) = A002623(n).
Sum_{k=1..n-1} k*T(n,k) = A339232(n).

A339230 Number of oriented series-parallel networks with integer valued elements summing to n.

Original entry on oeis.org

1, 3, 9, 32, 120, 490, 2077, 9158, 41401, 191232, 897849, 4273794, 20573696, 99994830, 490000756, 2418246995, 12008813611, 59962351145, 300864703306, 1516196518032, 7670827035223, 38946578808655, 198379559337073, 1013452414823740, 5191372465942866, 26658747310696437
Offset: 1

Views

Author

Andrew Howroyd, Nov 29 2020

Keywords

Comments

See A339228 for additional details.

Examples

			In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 3: (2), (11), (1|1).
a(3) = 9: (3), (12), (21), (1(1|1)), ((1|1)1), (111), (1|2), (1|11), (1|1|1).
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    EdgeWeightedT(u)={my(Z=x*Ser(u)); my(p=Z+O(x^2)); for(n=2, #u, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); Vec(p)}
    seq(n)={EdgeWeightedT(vector(n,i,1))}

A339297 Triangle read by rows: T(n,k) is the number of oriented series-parallel networks with n colored elements and without multiple unit elements in parallel using exactly k colors.

Original entry on oeis.org

1, 1, 2, 2, 12, 12, 5, 64, 162, 108, 13, 354, 1734, 2760, 1380, 36, 1992, 16977, 48716, 56100, 22440, 103, 11538, 161691, 746316, 1488240, 1338120, 446040, 306, 68427, 1524969, 10652086, 32760180, 49718640, 36614760, 10461360, 930, 414294, 14382720, 146464740, 652517010, 1487453760, 1816345440, 1131883200, 282970800
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2020

Keywords

Comments

A series configuration is an ordered concatenation of two or more parallel configurations and a parallel configuration is a multiset of two or more unit elements or series configurations. In this variation, parallel configurations may include the unit element only once. T(n, k) is the number of series or parallel configurations with n unit elements of k colors using each color at least once.

Examples

			Triangle begins:
    1;
    1,     2;
    2,    12,     12;
    5,    64,    162,    108;
   13,   354,   1734,   2760,    1380;
   36,  1992,  16977,  48716,   56100,   22440;
  103, 11538, 161691, 746316, 1488240, 1338120, 446040;
  ...
		

Crossrefs

Column 1 is A339290.
Main diagonal is A339301.
Row sums are A339298.
Cf. A339228.

Programs

  • PARI
    \\ R(n, k) gives colorings using at most k colors as a vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(Z=k*x, p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}
    M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
    {my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}

A339233 Number of inequivalent colorings of oriented series-parallel networks with n colored elements.

Original entry on oeis.org

1, 4, 21, 165, 1609, 19236, 266251, 4175367, 72705802, 1387084926, 28689560868, 638068960017, 15158039092293, 382527449091778, 10207466648995608, 286876818184163613, 8462814670769394769, 261266723355912507073, 8419093340955799898258, 282519424041100564770142
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2020

Keywords

Comments

Equivalence is up to permutation of the colors. Any number of colors may be used. See A339228 for additional details.

Examples

			In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 4: (11), (12), (1|1), (1|2).
a(3) = 21: (111), (112), (121), (122), (123), (1(1|1)), (1(1|2)), (1(2|2)), (1(2|3)), ((1|1)1), ((1|1)2), ((1|2)1), ((1|2)3), (1|1|1), (1|1|2), (1|2|3), (1|11), (1|12), (1|21), (1|22), (1|23).
		

Crossrefs

Cf. A003430 (uncolored), A339226, A339228, A339229, A339287 (unoriented), A339645.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(Z=x*sv(1), p=Z+O(x^2)); for(n=2, n, p=sEulerT(p^2/(1+p) + Z)-1); p}
    InequivalentColoringsSeq(cycleIndexSeries(15))
Showing 1-9 of 9 results.