cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A339225 Number of unoriented series-parallel networks with n elements.

Original entry on oeis.org

1, 2, 4, 11, 30, 98, 328, 1193, 4459, 17287, 68283, 274726, 1118960, 4607578, 19135274, 80063095, 337104367, 1427274619, 6072510001, 25949049372, 111319539096, 479243000380, 2069825207344, 8965693829582, 38940393808337, 169546919220357, 739895248735963
Offset: 1

Views

Author

Andrew Howroyd, Nov 27 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of distinct series or parallel configurations with n unit elements modulo reversing the order of all series configurations.

Examples

			In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 4: (ooo), (o(o|o)), (o|o|o), (o|oo).
a(4) = 11: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)),  (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
		

Crossrefs

Cf. A000084, A003430 (oriented), A339159 (achiral), A339223, A339224.

Programs

  • PARI
    \\ here B(n) gives A003430 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
    seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+t-x+B(n))/2}

Formula

a(n) = (A003430(n) + A339159(n))/2.
a(n) = A339223(n) + A339224(n) for n > 1.
A000084(n) <= a(n) <= A003430(n).

A339290 Number of oriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 103, 306, 930, 2887, 9100, 29082, 93951, 306414, 1007361, 3335088, 11108986, 37203873, 125193694, 423099557, 1435427202, 4886975378, 16690971648, 57172387872, 196358421066, 676050576441, 2332887221847, 8067160995797, 27950871439353, 97019613539949
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

A series configuration is an ordered concatenation of two or more parallel configurations and a parallel configuration is a multiset of two or more unit elements or series configurations. In this variation, parallel configurations may include the unit element only once. a(n) is the total number of series and parallel configurations with n unit elements.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 5: (oooo), (o(o|oo)), ((o|oo)o), (o|ooo), (oo|oo).
a(5) = 13: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o), (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
		

Crossrefs

A003430 is the case with multiple unit elements in parallel allowed.
A058387 is the case that order is not significant in series configurations.
Cf. A339156, A339288, A339289, A339293 (achiral), A339296 (unoriented), A339301 (labeled).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}

Formula

a(n) = A339288(n) + A339289(n).
G.f.: P(x)/(1 - P(x)) where P(x) is the g.f. of A339289.

A007453 Number of unlabeled connected series-parallel posets with n nodes.

Original entry on oeis.org

1, 1, 3, 9, 30, 103, 375, 1400, 5380, 21073, 83950, 338878, 1383576, 5702485, 23696081, 99163323, 417553252, 1767827220, 7520966100, 32135955585, 137849390424, 593407692685, 2562695780058, 11099806544050, 48206136562750, 209876865026303, 915840095739301
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 25; A[_] = 1;
    Do[A[x_] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms+1}]] + O[x]^(terms+1) // Normal, terms+1];
    A003430 = CoefficientList[A[x], x] // Rest;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i-1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    EULERi[A003430] (* Jean-François Alcover, Jan 23 2020 *)

Formula

See the 1989 and 1997 papers by Cameron cited above for generating functions, and the 1997 paper for asymptotics.
Inverse Euler transform of A003430. - Sean A. Irvine, Jan 04 2018
a(n) = A003430(n) - A007454(n) for n > 1. - Sean A. Irvine, Jan 04 2018

Extensions

Name corrected by Salah Uddin Mohammad, Jun 07 2020

A339228 Triangle read by rows: T(n,k) is the number of oriented series-parallel networks with n colored elements using exactly k colors.

Original entry on oeis.org

1, 2, 3, 5, 22, 19, 15, 146, 321, 195, 48, 970, 4116, 5972, 2791, 167, 6601, 48245, 125778, 135235, 51303, 602, 46012, 546570, 2281528, 4238415, 3609966, 1152019, 2256, 328188, 6118320, 38437972, 109815445, 157612413, 111006329, 30564075
Offset: 1

Views

Author

Andrew Howroyd, Nov 28 2020

Keywords

Comments

A series configuration is a unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is a unit element or a multiset of two or more series configurations. T(n, k) is the number of series or parallel configurations with n unit elements of k colors using each color at least once.

Examples

			Triangle begins:
    1;
    2,     3;
    5,    22,     19;
   15,   146,    321,     195;
   48,   970,   4116,    5972,    2791;
  167,  6601,  48245,  125778,  135235,   51303;
  602, 46012, 546570, 2281528, 4238415, 3609966, 1152019;
  ...
		

Crossrefs

Columns 1..2 are A003430, A339227.
Row sums are A339229.
Main diagonal is A048172.

Programs

  • PARI
    \\ R(n,k) gives colorings using at most k colors as a vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(Z=k*x, p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); Vec(p)}
    M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
    {my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}

A048172 Number of labeled series-parallel graphs with n edges.

Original entry on oeis.org

1, 3, 19, 195, 2791, 51303, 1152019, 30564075, 935494831, 32447734143, 1257770533339, 53884306900515, 2528224238464471, 128934398091500823, 7101273378743303779, 420078397130637237915, 26563302733186339752511, 1788055775343964413724143, 127652707703771090396080939
Offset: 1

Views

Author

Keywords

Comments

Labeled N-free posets. - Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002

References

  • Ronald C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, Research Report CORR 91-19, University of Waterloo, Sept 1991.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39.

Crossrefs

Cf. A000112 (unlabeled posets), A001035 (labeled posets), A003430 (unlabeled analog).

Programs

  • Maple
    with(gfun):
    f := series((ln(1+x)-x^2/(1+x)), x, 21):
    egf := seriestoseries(f, 'revogf'):
    seriestolist(egf, 'Laplace');
  • Mathematica
    lim = 19; Join[{1}, Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, lim}], y] + InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x),{x, 0, lim}], y], y], 2]*Range[2, lim]!] (* Jean-François Alcover, Sep 21 2011, after g.f. *)
    m = 17; Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2/(1+x), {x, 0, m}], x], x]*Table[k!,{k, 0, m}]](* Jean-François Alcover, Apr 18 2011 *)
  • Maxima
    h(n,k):=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1); a(n):=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1); /* Vladimir Kruchinin, Sep 08 2010 */
  • PARI
    x='x+O('x^55);
    s=-log(1-x)-x^2/(1-x);
    A048174=Vec(serlaplace(serreverse(s)));
    t=x+2*(1-cosh(x));
    A058349=Vec(serlaplace(serreverse(t)));
    A048172=A048174+A058349;  A048172[1]-=1;
    A048172 /* Joerg Arndt, Feb 04 2011 */
    

Formula

a(n) = A058349(n) + A048174(n).
a(n) = A058349(n) + A058350(n) (n>=2).
Reference (by Ronald C. Read) gives generating functions.
E.g.f. is reversion of log(1+x)-x^2/(1+x).
a(n)=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1), h(n,k)=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1), n>0. - Vladimir Kruchinin, Sep 08 2010
a(n) ~ sqrt((5+3*sqrt(5))/10) * n^(n-1) / (exp(n) * (2 - sqrt(5) + log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Feb 25 2014

Extensions

More terms from Joerg Arndt, Feb 04 2011

A007454 Number of unlabeled disconnected series-parallel posets with n nodes.

Original entry on oeis.org

1, 1, 2, 6, 18, 64, 227, 856, 3280, 12885, 51342, 207544, 847886, 3497384, 14541132, 60884173, 256480895, 1086310549, 4623128656, 19759964149, 84784735379, 365066645854, 1576927900803, 6831518134251, 29674505668536, 129216630647787, 563949605921815
Offset: 1

Views

Author

Keywords

Comments

a(1) = 0 would make more sense, but original article has a(1) = 1. - Sean A. Irvine, Jan 04 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 25; A[_] = 1;
    Do[A[x_] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
    A003430 = CoefficientList[A[x], x] // Rest;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    Join[{1}, Rest[A003430 - EULERi[A003430]]] (* Jean-François Alcover, Jan 23 2020 *)

Formula

a(n) = A003430(n) - A007453(n) for n > 1. - Sean A. Irvine, Jan 04 2018

Extensions

Name corrected by Salah Uddin Mohammad, Jun 07 2020

A339157 Number of essentially series achiral series-parallel networks with n elements.

Original entry on oeis.org

1, 1, 1, 3, 4, 11, 17, 46, 78, 203, 372, 946, 1830, 4561, 9207, 22609, 47166, 114514, 245154, 590345, 1289950, 3087959, 6858746, 16352074, 36800928, 87502317, 199036637, 472483088, 1084108363, 2571356964, 5942191918, 14090541799, 32754720101, 77684033014, 181473276607
Offset: 1

Views

Author

Andrew Howroyd, Nov 27 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of series configurations with n unit elements that are invariant under the reversal of all contained series configurations.

Examples

			In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 3: (oooo), ((o|o)(o|o)), (o(o|o)o).
a(5) = 4: (ooooo), ((o|o)o(o|o)), (o(o|oo)o), (o(o|o|o)o).
a(6) = 11: (oooooo), ((o|o)oo(o|o)), (o(o|o)(o|o)o), ((o|oo)(o|oo)), ((o|o|o)(o|o|o)), (oo(o|o)oo), ((o|o)(o|o)(o|o)), (o(o|ooo)o), (o(oo|oo)o), (o(o|o|oo)o), (o(o|o|o|o)o).
		

Crossrefs

Cf. A003430, A007453 (oriented), A339158, A339159, A339223 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A003430 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
    seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, p = x + q*(1 + x + x*Ser(EulerT(Vec(p+(s-subst(p,x,x^2))/2))) - p)); Vec(p+O(x*x^n))}

Formula

G.f.: x + (1 + P(x))*B(x^2) where P(x) is the g.f. of A339158 and B(x) is the g.f. of A003430.

A339159 Number of achiral series-parallel networks with n elements.

Original entry on oeis.org

1, 2, 3, 7, 12, 29, 54, 130, 258, 616, 1274, 3030, 6458, 15287, 33335, 78694, 174587, 411469, 925246, 2179010, 4952389, 11662221, 26733827, 62980863, 145385388, 342766624, 795810810, 1878109984, 4381423357, 10352044123, 24247955489, 57362089607
Offset: 1

Views

Author

Andrew Howroyd, Nov 27 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of series or parallel configurations with n unit elements that are invariant under the reversal of all contained series configurations.

Examples

			In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 3: (ooo), (o|oo), (o|o|o), (o|ooo), (oo|oo), (o|o|oo), (o|o|o|o).
a(4) = 7: (oooo), ((o|o)(o|o)), (o(o|o)o).
		

Crossrefs

Cf. A003430 (oriented), A339157, A339158, A339225 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A003430 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
    seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+t-x+O(x*x^n))}

Formula

a(n) = A339157(n) + A339158(n) for n > 1.

A003431 Number of isomorphism classes of connected irreducible posets with n labeled points.

Original entry on oeis.org

1, 1, 0, 0, 1, 12, 104, 956, 10037, 126578, 1971005, 38569954, 958347642, 30400603560, 1234260982770, 64187360439352, 4275470549123119
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Richard Stanley, Jun 19 2003
2 more terms from Vladeta Jovovic, Feb 17 2008
Title clarified by Geoffrey Critzer, Jul 08 2022
a(0) changed to 1 by Geoffrey Critzer, Jul 10 2022

A202180 Number of n-element unlabeled connected N-free posets.

Original entry on oeis.org

1, 1, 3, 9, 31, 115, 474, 2097, 9967, 50315, 268442, 1505463, 8840306, 54169431
Offset: 1

Views

Author

N. J. A. Sloane, Dec 13 2011

Keywords

Crossrefs

Row sums of A202178 and A202179.

Extensions

Missing term a(12) inserted by Salah Uddin Mohammad, May 26 2020
Showing 1-10 of 31 results. Next