A339225
Number of unoriented series-parallel networks with n elements.
Original entry on oeis.org
1, 2, 4, 11, 30, 98, 328, 1193, 4459, 17287, 68283, 274726, 1118960, 4607578, 19135274, 80063095, 337104367, 1427274619, 6072510001, 25949049372, 111319539096, 479243000380, 2069825207344, 8965693829582, 38940393808337, 169546919220357, 739895248735963
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 4: (ooo), (o(o|o)), (o|o|o), (o|oo).
a(4) = 11: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+t-x+B(n))/2}
A339290
Number of oriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 1, 2, 5, 13, 36, 103, 306, 930, 2887, 9100, 29082, 93951, 306414, 1007361, 3335088, 11108986, 37203873, 125193694, 423099557, 1435427202, 4886975378, 16690971648, 57172387872, 196358421066, 676050576441, 2332887221847, 8067160995797, 27950871439353, 97019613539949
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 5: (oooo), (o(o|oo)), ((o|oo)o), (o|ooo), (oo|oo).
a(5) = 13: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o), (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
A003430 is the case with multiple unit elements in parallel allowed.
A058387 is the case that order is not significant in series configurations.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}
A007453
Number of unlabeled connected series-parallel posets with n nodes.
Original entry on oeis.org
1, 1, 3, 9, 30, 103, 375, 1400, 5380, 21073, 83950, 338878, 1383576, 5702485, 23696081, 99163323, 417553252, 1767827220, 7520966100, 32135955585, 137849390424, 593407692685, 2562695780058, 11099806544050, 48206136562750, 209876865026303, 915840095739301
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 100 terms from Jean-François Alcover)
- B. I. Bayoumi, M. H. El-Zahar and S. M. Khamis, Asymptotic enumeration of N-free partial orders, Order 6 (1989), 219-232.
- P. J. Cameron, On the probability of connectedness, Discrete Math., 167 (1997), 175-187.
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
- P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- Index entries for sequences related to posets
-
terms = 25; A[_] = 1;
Do[A[x_] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms+1}]] + O[x]^(terms+1) // Normal, terms+1];
A003430 = CoefficientList[A[x], x] // Rest;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i-1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
EULERi[A003430] (* Jean-François Alcover, Jan 23 2020 *)
A339228
Triangle read by rows: T(n,k) is the number of oriented series-parallel networks with n colored elements using exactly k colors.
Original entry on oeis.org
1, 2, 3, 5, 22, 19, 15, 146, 321, 195, 48, 970, 4116, 5972, 2791, 167, 6601, 48245, 125778, 135235, 51303, 602, 46012, 546570, 2281528, 4238415, 3609966, 1152019, 2256, 328188, 6118320, 38437972, 109815445, 157612413, 111006329, 30564075
Offset: 1
Triangle begins:
1;
2, 3;
5, 22, 19;
15, 146, 321, 195;
48, 970, 4116, 5972, 2791;
167, 6601, 48245, 125778, 135235, 51303;
602, 46012, 546570, 2281528, 4238415, 3609966, 1152019;
...
-
\\ R(n,k) gives colorings using at most k colors as a vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n,k)={my(Z=k*x, p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); Vec(p)}
M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}
A048172
Number of labeled series-parallel graphs with n edges.
Original entry on oeis.org
1, 3, 19, 195, 2791, 51303, 1152019, 30564075, 935494831, 32447734143, 1257770533339, 53884306900515, 2528224238464471, 128934398091500823, 7101273378743303779, 420078397130637237915, 26563302733186339752511, 1788055775343964413724143, 127652707703771090396080939
Offset: 1
- Ronald C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, Research Report CORR 91-19, University of Waterloo, Sept 1991.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39.
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- Frédéric Fauvet, L. Foissy, D. Manchon, Operads of finite posets, arXiv preprint arXiv:1604.08149 [math.CO], 2016.
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299
- Index entries for reversions of series
- Index entries for sequences related to posets
-
with(gfun):
f := series((ln(1+x)-x^2/(1+x)), x, 21):
egf := seriestoseries(f, 'revogf'):
seriestolist(egf, 'Laplace');
-
lim = 19; Join[{1}, Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, lim}], y] + InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x),{x, 0, lim}], y], y], 2]*Range[2, lim]!] (* Jean-François Alcover, Sep 21 2011, after g.f. *)
m = 17; Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2/(1+x), {x, 0, m}], x], x]*Table[k!,{k, 0, m}]](* Jean-François Alcover, Apr 18 2011 *)
-
h(n,k):=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1); a(n):=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1); /* Vladimir Kruchinin, Sep 08 2010 */
-
x='x+O('x^55);
s=-log(1-x)-x^2/(1-x);
A048174=Vec(serlaplace(serreverse(s)));
t=x+2*(1-cosh(x));
A058349=Vec(serlaplace(serreverse(t)));
A048172=A048174+A058349; A048172[1]-=1;
A048172 /* Joerg Arndt, Feb 04 2011 */
A007454
Number of unlabeled disconnected series-parallel posets with n nodes.
Original entry on oeis.org
1, 1, 2, 6, 18, 64, 227, 856, 3280, 12885, 51342, 207544, 847886, 3497384, 14541132, 60884173, 256480895, 1086310549, 4623128656, 19759964149, 84784735379, 365066645854, 1576927900803, 6831518134251, 29674505668536, 129216630647787, 563949605921815
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 100 terms from Jean-François Alcover)
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
- P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Index entries for sequences related to posets
-
terms = 25; A[_] = 1;
Do[A[x_] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
A003430 = CoefficientList[A[x], x] // Rest;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
Join[{1}, Rest[A003430 - EULERi[A003430]]] (* Jean-François Alcover, Jan 23 2020 *)
A339157
Number of essentially series achiral series-parallel networks with n elements.
Original entry on oeis.org
1, 1, 1, 3, 4, 11, 17, 46, 78, 203, 372, 946, 1830, 4561, 9207, 22609, 47166, 114514, 245154, 590345, 1289950, 3087959, 6858746, 16352074, 36800928, 87502317, 199036637, 472483088, 1084108363, 2571356964, 5942191918, 14090541799, 32754720101, 77684033014, 181473276607
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 3: (oooo), ((o|o)(o|o)), (o(o|o)o).
a(5) = 4: (ooooo), ((o|o)o(o|o)), (o(o|oo)o), (o(o|o|o)o).
a(6) = 11: (oooooo), ((o|o)oo(o|o)), (o(o|o)(o|o)o), ((o|oo)(o|oo)), ((o|o|o)(o|o|o)), (oo(o|o)oo), ((o|o)(o|o)(o|o)), (o(o|ooo)o), (o(oo|oo)o), (o(o|o|oo)o), (o(o|o|o|o)o).
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, p = x + q*(1 + x + x*Ser(EulerT(Vec(p+(s-subst(p,x,x^2))/2))) - p)); Vec(p+O(x*x^n))}
A339159
Number of achiral series-parallel networks with n elements.
Original entry on oeis.org
1, 2, 3, 7, 12, 29, 54, 130, 258, 616, 1274, 3030, 6458, 15287, 33335, 78694, 174587, 411469, 925246, 2179010, 4952389, 11662221, 26733827, 62980863, 145385388, 342766624, 795810810, 1878109984, 4381423357, 10352044123, 24247955489, 57362089607
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 3: (ooo), (o|oo), (o|o|o), (o|ooo), (oo|oo), (o|o|oo), (o|o|o|o).
a(4) = 7: (oooo), ((o|o)(o|o)), (o(o|o)o).
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+t-x+O(x*x^n))}
A003431
Number of isomorphism classes of connected irreducible posets with n labeled points.
Original entry on oeis.org
1, 1, 0, 0, 1, 12, 104, 956, 10037, 126578, 1971005, 38569954, 958347642, 30400603560, 1234260982770, 64187360439352, 4275470549123119
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. R. Finch, Series-parallel networks
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for sequences related to posets
A202180
Number of n-element unlabeled connected N-free posets.
Original entry on oeis.org
1, 1, 3, 9, 31, 115, 474, 2097, 9967, 50315, 268442, 1505463, 8840306, 54169431
Offset: 1
Showing 1-10 of 31 results.
Comments