A003430
Number of unlabeled series-parallel posets (i.e., generated by unions and sums) with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 15, 48, 167, 602, 2256, 8660, 33958, 135292, 546422, 2231462, 9199869, 38237213, 160047496, 674034147, 2854137769, 12144094756, 51895919734, 222634125803, 958474338539, 4139623680861, 17931324678301, 77880642231286, 339093495674090, 1479789701661116
Offset: 0
From _Andrew Howroyd_, Nov 26 2020: (Start)
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 5: (ooo), (o(o|o)), ((o|o)o), (o|o|o), (o|oo).
a(4) = 15: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)oo), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), ((o|oo)o), ((o|o|o)o), (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)), (o|(o|o)o).
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39 (which deals with the labeled case of the same sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 1..100 from Jean-François Alcover)
- B. I. Bayoumi, M. H. El-Zahar and S. M. Khamis, Asymptotic enumeration of N-free partial orders, Order 6 (1989), 219-232.
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Uli Fahrenberg, Christian Johansen, Georg Struth, Ratan Bahadur Thapa, Generating Posets Beyond N, arXiv:1910.06162 [cs.FL], 2019.
- Frédéric Fauvet, L. Foissy, D. Manchon, Operads of finite posets, arXiv preprint arXiv:1604.08149 [math.CO], 2016.
- S. R. Finch, Series-parallel networks
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 72.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299. Math. Rev. 50 #4416.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- Index entries for sequences related to posets
-
terms = 25; A[] = 1; Do[A[x] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jun 29 2011, updated Jan 12 2018 *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x, 1-n)))); Vec(p)} \\ Andrew Howroyd, Nov 27 2020
A007453
Number of unlabeled connected series-parallel posets with n nodes.
Original entry on oeis.org
1, 1, 3, 9, 30, 103, 375, 1400, 5380, 21073, 83950, 338878, 1383576, 5702485, 23696081, 99163323, 417553252, 1767827220, 7520966100, 32135955585, 137849390424, 593407692685, 2562695780058, 11099806544050, 48206136562750, 209876865026303, 915840095739301
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 100 terms from Jean-François Alcover)
- B. I. Bayoumi, M. H. El-Zahar and S. M. Khamis, Asymptotic enumeration of N-free partial orders, Order 6 (1989), 219-232.
- P. J. Cameron, On the probability of connectedness, Discrete Math., 167 (1997), 175-187.
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
- P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- Index entries for sequences related to posets
-
terms = 25; A[_] = 1;
Do[A[x_] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms+1}]] + O[x]^(terms+1) // Normal, terms+1];
A003430 = CoefficientList[A[x], x] // Rest;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i-1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
EULERi[A003430] (* Jean-François Alcover, Jan 23 2020 *)
A339158
Number of essentially parallel achiral series-parallel networks with n elements.
Original entry on oeis.org
1, 1, 2, 4, 8, 18, 37, 84, 180, 413, 902, 2084, 4628, 10726, 24128, 56085, 127421, 296955, 680092, 1588665, 3662439, 8574262, 19875081, 46628789, 108584460, 255264307, 596774173, 1405626896, 3297314994, 7780687159, 18305763571, 43271547808, 102069399803
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (o|o).
a(3) = 2: (o|oo).
a(4) = 4: (o|ooo), (oo|oo), (o|o|oo), (o|o|o|o).
a(5) = 8: (o|oooo), (o|(o|o)(o|o)), (o|o(o|o)o), (oo|ooo), (o|o|ooo), (o|oo|oo), (o|o|o|oo), (o|o|o|o|o).
a(6) = 16 includes (o(o|o)|(o|o)o) which is the first example of a network that is achiral but does not have reflective symmetry when embedded in the plane as shown below (edges correspond to elements):
A
/ \\
o o --- No reflective symmetry ---
\\ /
Z
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, my(t=x + q*(1 + p)); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+O(x*x^n))}
A339224
Number of essentially parallel unoriented series-parallel networks with n elements.
Original entry on oeis.org
1, 1, 2, 5, 13, 41, 132, 470, 1730, 6649, 26122, 104814, 426257, 1754055, 7282630, 30470129, 128304158, 543303752, 2311904374, 9880776407, 42394198909, 182537610058, 788473887942, 3415782381520, 14837307126498, 64608442956047, 281975101347994, 1233237605651194
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo), (o|o).
a(3) = 2: (o|o|o), (o|oo).
a(4) = 5: (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, my(t=x + q*(1 + p)); p=x + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+subst(x/(1+x), x, B(n)))/2}
Showing 1-4 of 4 results.
Comments