A003430
Number of unlabeled series-parallel posets (i.e., generated by unions and sums) with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 15, 48, 167, 602, 2256, 8660, 33958, 135292, 546422, 2231462, 9199869, 38237213, 160047496, 674034147, 2854137769, 12144094756, 51895919734, 222634125803, 958474338539, 4139623680861, 17931324678301, 77880642231286, 339093495674090, 1479789701661116
Offset: 0
From _Andrew Howroyd_, Nov 26 2020: (Start)
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 5: (ooo), (o(o|o)), ((o|o)o), (o|o|o), (o|oo).
a(4) = 15: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)oo), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), ((o|oo)o), ((o|o|o)o), (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)), (o|(o|o)o).
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39 (which deals with the labeled case of the same sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 1..100 from Jean-François Alcover)
- B. I. Bayoumi, M. H. El-Zahar and S. M. Khamis, Asymptotic enumeration of N-free partial orders, Order 6 (1989), 219-232.
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Uli Fahrenberg, Christian Johansen, Georg Struth, Ratan Bahadur Thapa, Generating Posets Beyond N, arXiv:1910.06162 [cs.FL], 2019.
- Frédéric Fauvet, L. Foissy, D. Manchon, Operads of finite posets, arXiv preprint arXiv:1604.08149 [math.CO], 2016.
- S. R. Finch, Series-parallel networks
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 72.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299. Math. Rev. 50 #4416.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- Index entries for sequences related to posets
-
terms = 25; A[] = 1; Do[A[x] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jun 29 2011, updated Jan 12 2018 *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x, 1-n)))); Vec(p)} \\ Andrew Howroyd, Nov 27 2020
A007454
Number of unlabeled disconnected series-parallel posets with n nodes.
Original entry on oeis.org
1, 1, 2, 6, 18, 64, 227, 856, 3280, 12885, 51342, 207544, 847886, 3497384, 14541132, 60884173, 256480895, 1086310549, 4623128656, 19759964149, 84784735379, 365066645854, 1576927900803, 6831518134251, 29674505668536, 129216630647787, 563949605921815
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 100 terms from Jean-François Alcover)
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
- P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Index entries for sequences related to posets
-
terms = 25; A[_] = 1;
Do[A[x_] = Exp[Sum[(1/k)*(A[x^k] + 1/A[x^k] - 2 + x^k), {k, 1, terms + 1}]] + O[x]^(terms + 1) // Normal, terms + 1];
A003430 = CoefficientList[A[x], x] // Rest;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
Join[{1}, Rest[A003430 - EULERi[A003430]]] (* Jean-François Alcover, Jan 23 2020 *)
A339157
Number of essentially series achiral series-parallel networks with n elements.
Original entry on oeis.org
1, 1, 1, 3, 4, 11, 17, 46, 78, 203, 372, 946, 1830, 4561, 9207, 22609, 47166, 114514, 245154, 590345, 1289950, 3087959, 6858746, 16352074, 36800928, 87502317, 199036637, 472483088, 1084108363, 2571356964, 5942191918, 14090541799, 32754720101, 77684033014, 181473276607
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 3: (oooo), ((o|o)(o|o)), (o(o|o)o).
a(5) = 4: (ooooo), ((o|o)o(o|o)), (o(o|oo)o), (o(o|o|o)o).
a(6) = 11: (oooooo), ((o|o)oo(o|o)), (o(o|o)(o|o)o), ((o|oo)(o|oo)), ((o|o|o)(o|o|o)), (oo(o|o)oo), ((o|o)(o|o)(o|o)), (o(o|ooo)o), (o(oo|oo)o), (o(o|o|oo)o), (o(o|o|o|o)o).
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, p = x + q*(1 + x + x*Ser(EulerT(Vec(p+(s-subst(p,x,x^2))/2))) - p)); Vec(p+O(x*x^n))}
A202180
Number of n-element unlabeled connected N-free posets.
Original entry on oeis.org
1, 1, 3, 9, 31, 115, 474, 2097, 9967, 50315, 268442, 1505463, 8840306, 54169431
Offset: 1
A339158
Number of essentially parallel achiral series-parallel networks with n elements.
Original entry on oeis.org
1, 1, 2, 4, 8, 18, 37, 84, 180, 413, 902, 2084, 4628, 10726, 24128, 56085, 127421, 296955, 680092, 1588665, 3662439, 8574262, 19875081, 46628789, 108584460, 255264307, 596774173, 1405626896, 3297314994, 7780687159, 18305763571, 43271547808, 102069399803
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (o|o).
a(3) = 2: (o|oo).
a(4) = 4: (o|ooo), (oo|oo), (o|o|oo), (o|o|o|o).
a(5) = 8: (o|oooo), (o|(o|o)(o|o)), (o|o(o|o)o), (oo|ooo), (o|o|ooo), (o|oo|oo), (o|o|o|oo), (o|o|o|o|o).
a(6) = 16 includes (o(o|o)|(o|o)o) which is the first example of a network that is achiral but does not have reflective symmetry when embedded in the plane as shown below (edges correspond to elements):
A
/ \\
o o --- No reflective symmetry ---
\\ /
Z
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, my(t=x + q*(1 + p)); p=x + x*Ser(EulerT(Vec(t+(s-subst(t,x,x^2))/2))) - t); Vec(p+O(x*x^n))}
A339223
Number of essentially series unoriented series-parallel networks with n elements.
Original entry on oeis.org
1, 1, 2, 6, 17, 57, 196, 723, 2729, 10638, 42161, 169912, 692703, 2853523, 11852644, 49592966, 208800209, 883970867, 3760605627, 16068272965, 68925340187, 296705390322, 1281351319402, 5549911448062, 24103086681839, 104938476264310, 457920147387969, 2002462084788769
Offset: 1
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo), (o|o).
a(3) = 2: (ooo), (o(o|o)).
a(4) = 6: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)).
-
\\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, p = x + q*(1 + x + x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2))) - p)); Vec(p+x+subst(x^2/(1+x),x,B(n)))/2}
A202181
Triangle read by rows: T(n,k) = number of n-element unlabeled N-free posets of height k (1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 13, 24, 10, 1, 1, 25, 77, 61, 15, 1, 1, 43, 228, 291, 130, 21, 1, 1, 76, 644, 1229, 856, 246, 28, 1, 1, 128, 1776, 4872, 4840, 2136, 427, 36, 1, 1, 216, 4854, 18711, 25107, 15543, 4733, 694, 45, 1, 1, 354, 13184, 70858, 124167, 101538, 43120, 9577, 1071, 55, 1
Offset: 1
Triangle begins:
1
1 1
1 3 1
1 7 6 1
1 13 24 10 1
1 25 77 61 15 1
1 43 228 291 130 21 1
1 76 644 1229 856 246 28 1
1 128 1776 4872 4840 2136 427 36 1
1 216 4854 18711 25107 15543 4733 694 45 1
1 354 13184 70858 124167 101538 43120 9577 1071 55 1
...
A350772
Triangle read by rows: T(n,k) is the number of n-element unlabeled series-parallel posets with k connected components.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 30, 12, 4, 1, 1, 103, 45, 13, 4, 1, 1, 375, 160, 48, 13, 4, 1, 1, 1400, 613, 175, 49, 13, 4, 1, 1, 5380, 2354, 680, 178, 49, 13, 4, 1, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 1, 1;
9, 4, 1, 1;
30, 12, 4, 1, 1;
103, 45, 13, 4, 1, 1;
375, 160, 48, 13, 4, 1, 1;
1400, 613, 175, 49, 13, 4, 1, 1;
5380, 2354, 680, 178, 49, 13, 4, 1, 1;
...
A356558
Triangle read by rows: T(n,k), where n, k >= 2, is the number of n-element unlabeled connected series-parallel posets with k ordinal terms that are either the singleton or disconnected posets.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 16, 9, 4, 1, 52, 31, 14, 5, 1, 188, 108, 52, 20, 6, 1, 690, 402, 193, 80, 27, 7, 1, 2638, 1523, 744, 315, 116, 35, 8, 1, 10272, 5934, 2908, 1261, 483, 161, 44, 9, 1, 40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1
Offset: 2
Triangle begins:
1;
2, 1;
5, 3, 1;
16, 9, 4, 1;
52, 31, 14, 5, 1;
188, 108, 52, 20, 6, 1;
690, 402, 193, 80, 27, 7, 1;
2638, 1523, 744, 315, 116, 35, 8, 1;
10272, 5934, 2908, 1261, 483, 161, 44, 9, 1;
40782, 23505, 11580, 5085, 2010, 707, 216, 54, 10, 1;
The connected posets counted in the first three rows of the triangle are shown by using the Hasse diagram as follows:
-------
o
|
o
--------------------------
| o
o o o | |
/ \ \ / | o
o o o | |
| o
----------------------------------------------------------
o o o o o o | |
/|\ \|/ |X| | | o
o o o o o o | o o o o | |
| | \ / / \ | o
o o | o o o o | |
| / \ | / \ | \ / | o
o o o \ | o o o o | |
\ / | \ | | o
o o o | |
Showing 1-9 of 9 results.
Comments