A339231 Triangle read by rows: T(n,k) is the number of oriented series-parallel networks whose multigraph has n edges and k interior vertices, 0 <= k < n.
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 23, 13, 1, 1, 15, 59, 69, 22, 1, 1, 21, 124, 249, 172, 34, 1, 1, 28, 234, 711, 853, 378, 50, 1, 1, 36, 402, 1733, 3175, 2487, 755, 70, 1, 1, 45, 650, 3755, 9767, 11813, 6431, 1400, 95, 1, 1, 55, 995, 7443, 26043, 44926, 38160, 15098, 2445, 125, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 6, 7, 1; 1, 10, 23, 13, 1; 1, 15, 59, 69, 22, 1; 1, 21, 124, 249, 172, 34, 1; 1, 28, 234, 711, 853, 378, 50, 1; ... In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'. T(4,0) = 1: (o|o|o|o). T(4,1) = 6: ((o|o)(o|o)), (o(o|o|o)), ((o|o|o)o), (o|o|oo), (o|o(o|o)), (o|(o|o)o). T(4,2) = 7: (oo(o|o)), (o(o|o)o), ((o|o)oo), (o(o|oo)), ((o|oo)o), (oo|oo), (o|ooo). T(4,3) = 1: (oooo). The graph of (oo(o|o)) has 4 edges (elements) and 2 interior vertices as shown below: A---o---o===Z (where === is a double edge).
Programs
-
PARI
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, [v^i|v<-vars])/i ))-1)} VertexWeighted(n, W)={my(Z=x, p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerMT(Vec(W*p^2/(1 + W*p) + Z)))); Vec(p)} T(n)={[Vecrev(p)|p<-VertexWeighted(n,y)]} { my(A=T(12)); for(n=1, #A, print(A[n])) }
Comments