cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339240 a(n) = n*2^(2*n-2) + n*binomial(2*n,n)/2.

Original entry on oeis.org

0, 2, 14, 78, 396, 1910, 8916, 40684, 182552, 808614, 3545220, 15414212, 66556584, 285707708, 1220340296, 5189913240, 21988512304, 92850096902, 390913863012, 1641450064084, 6876023427080, 28741451864916, 119902111845208, 499304732388968, 2075821104461136, 8617006998238300
Offset: 0

Views

Author

Michel Marcus, Nov 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n*(2^(2*n - 2) + Binomial[2*n, n]/2); Array[a, 26, 0] (* Amiram Eldar, Nov 28 2020 *)
  • PARI
    a(n) = n*2^(2*n-2) + n*binomial(2*n,n)/2;
    
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*k*sum(j=0, k, binomial(n, j)));

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*k*Sum_{j=0..k} binomial(n, j).
a(n) = A002697(n) + A002457(n-1), for n>0.
G.f.: x*(1/(1 - 4*x)^2 + 1/(1 - 4*x)^(3/2)). - Stefano Spezia, Nov 28 2020