A339261 Decimal expansion of the conjecturally maximum possible volume of a polyhedron with 9 vertices inscribed in the unit sphere.
2, 0, 4, 3, 7, 5, 0, 1, 1, 5, 8, 9, 9, 6, 3, 9, 8, 4, 1, 1, 6, 6, 3, 6, 5, 4, 6, 4, 2, 2, 6, 9, 8, 5, 3, 3, 3, 8, 6, 3, 2, 6, 0, 6, 1, 5, 2, 9, 4, 7, 5, 1, 8, 1, 8, 7, 1, 8, 2, 1, 5, 7, 9, 5, 6, 8, 7, 1, 0, 4, 2, 6, 4, 0, 9, 2, 7, 7, 1, 4, 0, 6, 1, 7, 8, 5, 9
Offset: 1
Examples
2.0437501158996398411663654642269853338632606152947518187182157956871...
Links
- R. H. Hardin, N. J. A. Sloane and W. D. Smith, Maximal Volume Spherical Codes.
- Hugo Pfoertner, Visualization of Polyhedron, (1999).
- Hugo Pfoertner, 9-Vertex-Polyhedron with maximum volume inscribed in a sphere, YouTube video, Feb 10 2021.
Crossrefs
Programs
-
Mathematica
RealDigits[3*Sqrt[2*Sqrt[3] - 3], 10, 120][[1]] (* Amiram Eldar, Jun 28 2023 *)
-
PARI
3*sqrt(2*sqrt(3) - 3)
Formula
Equals 3*sqrt(2*sqrt(3) - 3).
Comments