cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A339285 Triangle read by rows: T(n,k) is the number of unoriented series-parallel networks whose multigraph has n edges and k interior vertices, 0 <= k < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 5, 1, 1, 6, 14, 8, 1, 1, 9, 34, 39, 14, 1, 1, 12, 68, 132, 94, 20, 1, 1, 16, 126, 370, 447, 202, 30, 1, 1, 20, 212, 887, 1625, 1275, 398, 40, 1, 1, 25, 340, 1911, 4955, 5985, 3284, 730, 55, 1, 1, 30, 515, 3765, 13133, 22608, 19245, 7649, 1266, 70, 1
Offset: 1

Views

Author

Andrew Howroyd, Nov 30 2020

Keywords

Comments

Unoriented version of A339231. Equivalence is up to reversal of all parts combined in series.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   5,    1;
  1,  6,  14,    8,    1;
  1,  9,  34,   39,   14,    1;
  1, 12,  68,  132,   94,   20,    1;
  1, 16, 126,  370,  447,  202,   30,   1;
  1, 20, 212,  887, 1625, 1275,  398,  40,  1;
  1, 25, 340, 1911, 4955, 5985, 3284, 730, 55, 1;
  ...
T(4,0) = 1: (o|o|o|o).
T(4,1) = 4: ((o|o)(o|o)), (o(o|o|o)), (o|o|oo), (o|o(o|o)).
T(4,2) = 5: (oo(o|o)), (o(o|o)o),  (o(o|oo)),  (oo|oo), (o|ooo).
T(4,3) = 1: (oooo).
		

Crossrefs

Row sums are A339225.

Programs

  • PARI
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, [v^i|v<-vars])/i ))-1)}
    SubPwr(p,e)={my(vars=variables(p)); substvec(p, vars, [v^e|v<-vars])}
    BW(n, Z, W)={my(p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerMT(Vec(W*p^2/(1+W*p)+Z)))); p}
    VertexWeighted(n, Z, W)={my(q=SubPwr(BW((n+1)\2, Z, W), 2), W2=SubPwr(W, 2), s=SubPwr(Z, 2)+W2*q^2/(1+W2*q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(W + W2*p); p=Z + x*Ser(EulerMT(Vec(t+(s-SubPwr(t, 2))/2))) - t); Vec(p+t-Z+BW(n, Z, W))/2}
    T(n)={[Vecrev(p)|p<-VertexWeighted(n, x, y)]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) }

Formula

T(n,0) = T(n,n-1) = 1.
T(n,1) = A002620(n).
A339286(n) = Sum_{k=1..n-1} k*T(n,k).
Showing 1-1 of 1 results.