A339303 Triangle read by rows: T(n,k) is the number of unoriented linear forests with n nodes and k rooted trees.
1, 1, 1, 2, 1, 1, 4, 3, 2, 1, 9, 6, 6, 2, 1, 20, 16, 15, 8, 3, 1, 48, 37, 41, 22, 12, 3, 1, 115, 96, 106, 69, 38, 15, 4, 1, 286, 239, 284, 194, 124, 52, 20, 4, 1, 719, 622, 750, 564, 377, 189, 77, 24, 5, 1, 1842, 1607, 2010, 1584, 1144, 618, 292, 100, 30, 5, 1
Offset: 1
Examples
Triangle read by rows: 1; 1, 1; 2, 1, 1; 4, 3, 2, 1; 9, 6, 6, 2, 1; 20, 16, 15, 8, 3, 1; 48, 37, 41, 22, 12, 3, 1; 115, 96, 106, 69, 38, 15, 4, 1; 286, 239, 284, 194, 124, 52, 20, 4, 1; 719, 622, 750, 564, 377, 189, 77, 24, 5, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
PARI
\\ TreeGf is A000081 as g.f. TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(r^k + r^(k%2)*subst(r, x, x^2)^(k\2), -n)/2} M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~)) { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }
Formula
G.f of column k: (r(x)^k + r(x)^(k mod 2)*r(x^2)^floor(k/2))/2 where r(x) is the g.f. of A000081.
Comments