A339314 a(n) is the least semiprime k > n-th semiprime s = A001358(n) such that k-s and k+s are both semiprimes.
10, 15, 86, 25, 35, 106, 25, 55, 94, 51, 58, 85, 39, 77, 94, 95, 74, 55, 106, 178, 143, 155, 69, 118, 95, 142, 121, 118, 119, 91, 146, 142, 115, 206, 115, 115, 206, 169, 134, 146, 143, 178, 133, 158, 155, 262, 177, 158, 178, 155, 159, 183, 254, 194, 205, 202, 226, 187, 298, 206, 226, 209
Offset: 1
Keywords
Examples
s=4, k=10, 6 and 14 are all semiprimes, s=6, k=15, 9 and 21 are all semiprimes, s=9, k=86, 77 and 95 are all semiprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A001358.
Programs
-
Maple
N:= 10^3: SP:= select(t -> numtheory:-bigomega(t)=2, [$4..N]): f:= proc(n) local i,s; s:= SP[n]; for i from n+1 do if numtheory:-bigomega(SP[i]-s)=2 and numtheory:-bigomega(SP[i]+s)=2 then return SP[i] fi od; end proc: map(f, [$1..100]); # Robert Israel, Dec 27 2020
-
PARI
issemip(n) = bigomega(n)==2; lista(nn) = {my(v = select(issemip, [1..nn])); for (n=1, #v, my(ik=n+1, s=v[n]); while (!(issemip(v[ik]+s) && issemip(v[ik]-s)), ik++; if (ik>#v, return)); print1(v[ik], ", "););} \\ Michel Marcus, Dec 19 2020
Comments