A339370 a(n) = Sum_{k=1..floor(n/2)} (n-k) * floor((n-k)/k).
0, 1, 4, 11, 19, 36, 50, 76, 102, 138, 165, 227, 262, 318, 381, 460, 510, 614, 672, 791, 889, 990, 1064, 1249, 1353, 1477, 1610, 1790, 1891, 2133, 2244, 2455, 2626, 2798, 2983, 3312, 3452, 3649, 3857, 4198, 4356, 4715, 4883, 5190, 5514, 5763, 5949, 6446, 6686, 7045
Offset: 1
Programs
-
Mathematica
Table[Sum[(n - k)*Floor[(n - k)/k], {k, Floor[n/2]}], {n, 60}]
-
PARI
a(n) = sum(k=1, n\2, (n-k) * ((n-k)\k)); \\ Michel Marcus, Dec 02 2020
-
Python
from math import isqrt def A339370(n): return n*(1-n)+(s:=isqrt(n))**2*(s+1-(n<<1))-sum((q:=n//k)*((k-(n<<1)<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 27 2023
Formula
a(n) ~ n^2*(log(n) + 2*EulerGamma - Pi^2/12 - 3/2). - Rok Cestnik, Dec 20 2020
Comments