cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339404 Number of partitions of n into an even number of parts that are not multiples of 3.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 11, 13, 19, 21, 29, 35, 45, 53, 69, 80, 102, 121, 149, 176, 218, 254, 310, 365, 438, 513, 616, 716, 853, 994, 1172, 1362, 1604, 1853, 2170, 2509, 2920, 3365, 3909, 4488, 5193, 5958, 6862, 7854, 9030, 10303, 11809, 13460, 15376, 17487, 19941, 22624, 25736, 29161
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2020

Keywords

Examples

			a(7) = 4 because we have [5, 2], [4, 1, 1, 1], [2, 2, 2, 1] and [2, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
          b(n, i-1, t)+`if`(irem(i, 3)=0, 0, b(n-i, min(n-i, i), 1-t))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    nmax = 57; CoefficientList[Series[(1/2) (Product[(1 - x^(3 k))/(1 - x^k), {k, 1, nmax}] + Product[(1 + x^(3 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 - x^(3*k)) / (1 - x^k) + Product_{k>=1} (1 + x^(3*k)) / (1 + x^k)).
a(n) = (A000726(n) + A109389(n)) / 2.