A339407 Number of partitions of n into an odd number of parts that are not multiples of 4.
0, 1, 1, 2, 1, 4, 4, 7, 6, 13, 13, 21, 21, 36, 38, 57, 59, 90, 98, 137, 148, 210, 231, 310, 341, 459, 511, 664, 737, 957, 1073, 1357, 1518, 1918, 2156, 2673, 3002, 3712, 4182, 5100, 5737, 6976, 7866, 9460, 10652, 12777, 14402, 17126, 19284, 22867, 25761, 30340, 34139, 40099
Offset: 0
Keywords
Examples
a(6) = 4 because we have [6], [3, 2, 1], [2, 2, 2] and [2, 1, 1, 1, 1].
Links
- Cristina Ballantine and Mircea Merca, 4-Regular partitions and the pod function, arXiv:2111.10702 [math.CO], 2021.
- Index entries for sequences related to partitions
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0, b(n, i-1, t)+`if`(irem(i, 4)=0, 0, b(n-i, min(n-i, i), 1-t)))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..55); # Alois P. Heinz, Dec 03 2020
-
Mathematica
nmax = 53; CoefficientList[Series[(1/2) (Product[(1 - x^(4 k))/(1 - x^k), {k, 1, nmax}] - Product[(1 + x^(4 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]