cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339411 Product of partial sums of odd squares.

Original entry on oeis.org

1, 1, 10, 350, 29400, 4851000, 1387386000, 631260630000, 429257228400000, 415950254319600000, 553213838245068000000, 979741707532015428000000, 2253405927323635484400000000, 6591212337421633791870000000000, 24084289880938649875492980000000000, 108258883014819231190340945100000000000
Offset: 0

Views

Author

Werner Schulte, Dec 03 2020

Keywords

Comments

a(n) is also the number of labeled histories across all trifurcating labeled topologies on trees with non-simultaneous trifurcations, where the number of leaves is 2n+1. - Noah A Rosenberg, Feb 24 2025

Examples

			a(4) = (1^2) * (1^2 + 3^2) * (1^2 + 3^2 + 5^2) * (1^2 + 3^2 + 5^2 + 7^2) = 1 * 10 * 35 * 84 = 29400.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)*(4*n^3-n)/3)
        end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    Array[((2 #)!*(2 # + 1)!)/(#!*12^#) &, 16, 0] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    for(n=0,9,print((2*n)!*(2*n+1)!/(n!*12^n)))
    
  • PARI
    for(n=0,9,print(prod(i=1,n,sum(j=1,i,(2*j-1)^2))))

Formula

a(n) = Product_{i=1..n} (Sum_{j=1..i} (2*j - 1)^2).
a(n) = Product_{i=1..n} binomial(2*i + 1, 3).
a(n) = Product_{i=1..n} A000447(i).
a(n) = ((2*n)! * (2*n+1)!) / (n! * 12^n).
a(n) / A135438(n) = A000108(n).
a(n) = (Gamma(2*n + 2)*Gamma(n + 1/2))/(3^n*sqrt(Pi)). - Peter Luschny, Dec 11 2020
D-finite with recurrence 3*a(n) -n*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 25 2023