A339427 Number of compositions (ordered partitions) of n into an odd number of powers of 2.
0, 1, 1, 1, 4, 4, 9, 17, 26, 50, 88, 150, 274, 478, 841, 1497, 2634, 4650, 8234, 14518, 25654, 45340, 80040, 141414, 249822, 441192, 779422, 1376752, 2431772, 4295678, 7587761, 13402881, 23675186, 41819442, 73869802, 130483966, 230485902, 407130212, 719154602
Offset: 0
Keywords
Examples
a(5) = 4 because we have [2, 2, 1], [2, 1, 2], [1, 2, 2] and [1, 1, 1, 1, 1].
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-2^i, 1-t), i=0..ilog2(n))) end: a:= n-> b(n, 0): seq(a(n), n=0..42); # Alois P. Heinz, Dec 03 2020
-
Mathematica
nmax = 38; CoefficientList[Series[(1/2) (1/(1 - Sum[x^(2^k), {k, 0, Floor[Log[2, nmax]] + 1}]) - 1/(1 + Sum[x^(2^k), {k, 0, Floor[Log[2, nmax]] + 1}])), {x, 0, nmax}], x]