A339430 Number of compositions (ordered partitions) of n into an even number of distinct squares.
1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 24, 0, 0, 0, 2, 0, 0, 2, 0, 24, 2, 2, 0, 0, 0, 2, 24, 0, 0, 0, 26, 24, 2, 2, 24, 0, 0, 24, 2, 0, 0, 2, 24, 24, 0, 28, 24, 0, 2, 0, 24, 24, 0, 2, 26, 24, 0, 0, 72, 24, 2
Offset: 0
Examples
a(30) = 24 because we have [16, 9, 4, 1] (24 permutations).
Links
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, irem(1+p, 2)*p!, (s-> `if`(s>n, 0, b(n, i+1, p)+b(n-s, i+1, p+1)))(i^2)) end: a:= n-> b(n, 1, 0): seq(a(n), n=0..100); # Alois P. Heinz, Dec 04 2020
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, Mod[1 + p, 2]*p!, With[{s = i^2}, If[s > n, 0, b[n, i + 1, p] + b[n - s, i + 1, p + 1]]]]; a[n_] := b[n, 1, 0]; a /@ Range[0, 100] (* Jean-François Alcover, Mar 09 2021, after Alois P. Heinz *)