A339434 Number of compositions (ordered partitions) of n into a prime number of distinct prime parts.
0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 8, 0, 8, 2, 8, 8, 10, 0, 16, 8, 16, 14, 16, 12, 18, 14, 22, 18, 136, 18, 138, 26, 22, 26, 258, 30, 266, 30, 266, 158, 492, 36, 506, 158, 510, 278, 744, 174, 748, 290, 758, 528, 990, 306, 1228, 668, 1116, 780, 6384, 678, 6630, 800, 1720, 1274
Offset: 0
Examples
a(10) = 8 because we have [7, 3], [3, 7], [5, 3, 2], [5, 2, 3], [3, 5, 2], [3, 2, 5], [2, 5, 3] and [2, 3, 5].
Links
Programs
-
Maple
s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end: b:= proc(n, i, t) option remember; `if`(s(i)
`if`(p>n, 0, b(n-p, i-1, t+1)))(ithprime(i))+b(n, i-1, t))) end: a:= n-> b(n, numtheory[pi](n), 0): seq(a(n), n=0..70); # Alois P. Heinz, Dec 04 2020 -
Mathematica
s[n_] := s[n] = If[n < 1, 0, Prime[n] + s[n - 1]]; b[n_, i_, t_] := b[n, i, t] = If[s[i] < n, 0, If[n == 0, If[PrimeQ[t], t!, 0], Function[p, If[p > n, 0, b[n - p, i - 1, t + 1]]][Prime[i]] + b[n, i - 1, t]]]; a[n_] := b[n, PrimePi[n], 0]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)