A339453 Number of subsets of {1..n} whose harmonic mean is an integer.
1, 2, 3, 4, 5, 12, 13, 14, 15, 18, 19, 26, 27, 30, 53, 54, 55, 100, 101, 180, 203, 210, 211, 378, 379, 382, 383, 1092, 1093, 2020, 2021, 2022, 3933, 3956, 6473, 10226, 10227, 10266, 10561, 20948, 20949
Offset: 1
Examples
a(6) = 12 subsets: {1}, {2}, {3}, {4}, {5}, {6}, {2, 6}, {3, 6}, {1, 3, 6}, {2, 3, 6}, {3, 4, 6} and {1, 2, 3, 6}.
Links
- Eric W. Weisstein's World of Mathematics, Harmonic Mean
Programs
-
Python
from itertools import chain, combinations from fractions import Fraction def powerset(s): # skip empty set return chain.from_iterable(combinations(s, r) for r in range(1,len(s)+1)) def hm(s): ss = sum(Fraction(1, i) for i in s) return Fraction(len(s)*ss.denominator, ss.numerator) def a(n): return sum(hm(s).denominator==1 for s in powerset(range(1,n+1))) print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Dec 06 2020
-
Python
from math import lcm from itertools import combinations def A339453(n): m = lcm(*range(2,n+1)) return sum(1 for i in range(1,n+1) for d in combinations((m//i for i in range(1,n+1)),i) if m*i % sum(d) == 0) # Chai Wah Wu, Dec 02 2021
Formula
a(n) >= a(n-1)+1. For prime p, a(p^k) = a(p^k-1)+1. - Chai Wah Wu, Dec 14 2020
Extensions
a(23)-a(29) from Michael S. Branicky, Dec 06 2020
a(30)-a(35) from Chai Wah Wu, Dec 08 2020
a(36)-a(39) from Chai Wah Wu, Dec 11 2020
a(40)-a(41) from Chai Wah Wu, Dec 19 2020
Comments