cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339461 Number of Fibonacci divisors of n^2 + 1.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 4, 1, 2, 1, 3, 3, 2, 1, 4, 2, 3, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 5, 2, 2, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 3, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 4, 1, 2, 2
Offset: 0

Views

Author

Michel Lagneau, Dec 06 2020

Keywords

Examples

			a(13) = 4 because the divisors of 13^2 + 1 = 170 are {1, 2, 5, 10, 17, 34, 85, 170} with 4 Fibonacci divisors: 1, 2, 5 and 34.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):nn:=100:F:={}:
    for k from 1 to nn do:
      F:=F union {fibonacci(k)}:
    od:
       for n from 0 to 90 do:
        f:=n^2+1:d:=divisors(f):
        lst:= F intersect d: n1:=nops(lst):printf(`%d, `,n1):
       od:
  • Mathematica
    Array[DivisorSum[#^2 + 1, 1 &, Or @@ Map[IntegerQ@ Sqrt[#] &, 5 #^2 + 4 {-1, 1}] &] &, 105, 0] (* Michael De Vlieger, Dec 07 2020 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8);
    a(n) = sumdiv(n^2+1, d, isfib(d)); \\ Michel Marcus, Dec 06 2020

Formula

a(A005574(n)) = 1 for n > 2.
a(n) = A005086(A002522(n)). - Michel Marcus, Dec 06 2020