A339466 Primes p such that gpf((p - 1)/gpf(p - 1)) > 3, where gpf(m) is the greatest prime factor of m, A006530.
71, 101, 131, 151, 191, 197, 211, 239, 251, 281, 311, 331, 401, 419, 421, 431, 443, 461, 463, 491, 521, 547, 571, 599, 601, 617, 631, 647, 659, 661, 677, 683, 691, 701, 727, 743, 751, 761, 821, 827, 859, 881, 883, 911, 941, 947, 953, 967, 971, 991, 1013, 1021
Offset: 1
Keywords
Examples
71 is prime, 70/7 = 10 = 2*5 hence 71 is a term. 101 is prime, 100/5 = 20 = 2^2*5 hence 101 is a term. 151 is prime, 150/5 = 30 = 2*3*5 hence 151 is a term. The first few quotients obtained are: 10, 20, 10, 30, 10, 28, 30, 14, 50, 40, ...
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- P. Erdős and C. Pomerance, On the largest prime factors of n and n+1, Aequationes Math. 17 (1978), p. 311-321. [alternate link]
Crossrefs
Programs
-
Magma
s:=func
; [p:p in PrimesInInterval(3,1100)|( not 3 in PrimeDivisors(a) and #PrimeDivisors(a) ge 2) or ( 3 in PrimeDivisors(a) and #PrimeDivisors(a) ge 3) where a is (p-1) div s(p-1)]; // Marius A. Burtea, Dec 10 2020 -
Maple
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)): is_a := n -> isprime(n) and gpf((n-1)/gpf(n-1)) > 3: select(is_a, [$5..1021]); # Peter Luschny, Dec 13 2020
-
Mathematica
q[n_] := Module[{f = FactorInteger[n - 1]}, (Length[f] == 1 && f[[1, 1]] == 2) || (Length[f] == 2 && f[[1, 1]] == 2 && f[[2, 2]] == 1) || (Length[f] == 2 && f[[2, 1]] == 3 && f[[2, 2]] > 1) || (Length[f] == 3 && f[[2, 1]] == 3 && f[[3, 2]] == 1)]; Select[Range[3, 1000], PrimeQ[#] && ! q[#] &] (* Amiram Eldar, Dec 10 2020 *)
-
PARI
is(n) = {if(!isprime(n) || n==2, return(0)); my(pm1 = n-1, f = factor(pm1)[,1]); (pm1 /= (f[#f]*1<
1} \\ David A. Corneth, Dec 13 2020
Extensions
More terms from Amiram Eldar, Dec 11 2020
Comments