cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339472 Integers k for which there is a divisor d, such that sigma(k) = d*sigma(d).

Original entry on oeis.org

1, 6, 12, 28, 30, 56, 117, 120, 132, 140, 182, 306, 380, 496, 552, 672, 775, 870, 992, 1080, 1287, 1406, 1428, 1680, 1722, 1892, 2016, 2184, 2256, 2480, 2793, 2862, 3276, 3540, 3640, 3782, 3960, 4060, 4556, 4560, 4650, 5112, 5382, 5402, 5460, 6120, 6320, 6552
Offset: 1

Views

Author

Marius A. Burtea, Dec 06 2020

Keywords

Comments

All terms are nonprimes.
The sequence includes all numbers of the form p*(p + 1) with p prime. Indeed: sigma(p*(p + 1)) = sigma(p)*sigma(p + 1) = (p + 1)*sigma(p + 1). So A036690 is a subsequence. Thus, the sequence is infinite.
Let k >= 1. If p and q = 1 + p + ... + p^(2*k) are prime numbers, then m = p^(2*k)*q is a term. Indeed, sigma(m) = sigma(p^(2*k)*q) = sigma(p^(2*k))*sigma(q) = q*sigma(q).
p is in: A053182 (k = 1), A065509 (k = 2), A163268 (k = 3), and A240693 (k = 5).
For k = 4 there are no prime p because 1 + p + p^2 + p^3 + p^4 + p^5 + p^6 + p^7 + p^8 = (p^6 + p^3 + 1)*(p^2 + p + 1).
If m = 2^(p - 1)*(2^p - 1), p >= 1, (see A006516), then sigma(m) = sigma(2^(p - 1)*(2^p - 1)) = sigma(2^(p - 1))*sigma(2^p - 1) = (2^p - 1)*sigma(2^p - 1), so m is a term.
Thus, A006516(n) and A000396(n), for n >= 1, are terms.

Examples

			sigma(6) = 12 = 3*4 = 3*sigma(3), so 6 is a term.
sigma(12) = 28 = 4*7 = 4*sigma(4), so 12 is a term.
sigma(30) = 72 = 6*12 = 6*sigma(6), so 30 is a term.
sigma(56) = 120 = 8*15 = 8*sigma(8), so 56 is a term.
sigma(117) = 182 = 13*14 = 13*sigma(13), so 117 is a term.
		

Crossrefs

Programs

  • Magma
    s:=func; [n:n in [1..6600]|s(n)];
    
  • Mathematica
    q[n_] := Module[{d = Divisors[n], s}, s = Plus @@ d; AnyTrue[d, #*DivisorSigma[1, #] == s &]]; Select[Range[7000], q] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    isok(k) = my(sk=sigma(k)); fordiv(k, d, if (d*sigma(d) == sk, return(1))); \\ Michel Marcus, Dec 06 2020