A339472 Integers k for which there is a divisor d, such that sigma(k) = d*sigma(d).
1, 6, 12, 28, 30, 56, 117, 120, 132, 140, 182, 306, 380, 496, 552, 672, 775, 870, 992, 1080, 1287, 1406, 1428, 1680, 1722, 1892, 2016, 2184, 2256, 2480, 2793, 2862, 3276, 3540, 3640, 3782, 3960, 4060, 4556, 4560, 4650, 5112, 5382, 5402, 5460, 6120, 6320, 6552
Offset: 1
Keywords
Examples
sigma(6) = 12 = 3*4 = 3*sigma(3), so 6 is a term. sigma(12) = 28 = 4*7 = 4*sigma(4), so 12 is a term. sigma(30) = 72 = 6*12 = 6*sigma(6), so 30 is a term. sigma(56) = 120 = 8*15 = 8*sigma(8), so 56 is a term. sigma(117) = 182 = 13*14 = 13*sigma(13), so 117 is a term.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Magma
s:=func
; [n:n in [1..6600]|s(n)]; -
Mathematica
q[n_] := Module[{d = Divisors[n], s}, s = Plus @@ d; AnyTrue[d, #*DivisorSigma[1, #] == s &]]; Select[Range[7000], q] (* Amiram Eldar, Dec 06 2020 *)
-
PARI
isok(k) = my(sk=sigma(k)); fordiv(k, d, if (d*sigma(d) == sk, return(1))); \\ Michel Marcus, Dec 06 2020
Comments