cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339473 Numbers k such that floor(sqrt(k)) divides k^2, but does not divide k.

Original entry on oeis.org

18, 22, 68, 76, 84, 87, 93, 96, 150, 162, 260, 264, 268, 276, 280, 284, 330, 336, 348, 354, 410, 430, 588, 612, 630, 635, 640, 645, 655, 660, 665, 670, 738, 747, 765, 774, 798, 826, 1032, 1040, 1048, 1064, 1072, 1080, 1302, 1308, 1314, 1320, 1326, 1338, 1344, 1350
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 24 2021

Keywords

Examples

			18 is in the sequence since floor(sqrt(18)) = 4, which does not divide 18, but it does divide 18^2 = 324.
		

Crossrefs

Cf. A006446.

Programs

  • Mathematica
    Flatten[Table[If[(1 - Ceiling[n^2/Floor[Sqrt[n]]] + Floor[n^2/Floor[Sqrt[n]]]) (Ceiling[n/Floor[Sqrt[n]]] - Floor[n/Floor[Sqrt[n]]]) == 1, n, {}], {n, 2000}]]
  • PARI
    isok(k) = (k % sqrtint(k)) && !(k^2 % sqrtint(k)); \\ Michel Marcus, Apr 24 2021
    
  • Python
    from math import isqrt
    def ok(k): r = isqrt(k); return k % r != 0 and k**2 % r == 0
    print(list(filter(ok, range(1, 1351)))) # Michael S. Branicky, Apr 24 2021