A339473 Numbers k such that floor(sqrt(k)) divides k^2, but does not divide k.
18, 22, 68, 76, 84, 87, 93, 96, 150, 162, 260, 264, 268, 276, 280, 284, 330, 336, 348, 354, 410, 430, 588, 612, 630, 635, 640, 645, 655, 660, 665, 670, 738, 747, 765, 774, 798, 826, 1032, 1040, 1048, 1064, 1072, 1080, 1302, 1308, 1314, 1320, 1326, 1338, 1344, 1350
Offset: 1
Keywords
Examples
18 is in the sequence since floor(sqrt(18)) = 4, which does not divide 18, but it does divide 18^2 = 324.
Crossrefs
Cf. A006446.
Programs
-
Mathematica
Flatten[Table[If[(1 - Ceiling[n^2/Floor[Sqrt[n]]] + Floor[n^2/Floor[Sqrt[n]]]) (Ceiling[n/Floor[Sqrt[n]]] - Floor[n/Floor[Sqrt[n]]]) == 1, n, {}], {n, 2000}]]
-
PARI
isok(k) = (k % sqrtint(k)) && !(k^2 % sqrtint(k)); \\ Michel Marcus, Apr 24 2021
-
Python
from math import isqrt def ok(k): r = isqrt(k); return k % r != 0 and k**2 % r == 0 print(list(filter(ok, range(1, 1351)))) # Michael S. Branicky, Apr 24 2021