A339512 Number of subsets of {1..n} whose elements have the same number of distinct prime factors.
1, 2, 3, 5, 9, 17, 18, 34, 66, 130, 132, 260, 264, 520, 528, 544, 1056, 2080, 2112, 4160, 4224, 4352, 4608, 8704, 9216, 17408, 18432, 34816, 36864, 69632, 69633, 135169, 266241, 270337, 278529, 294913, 327681, 589825, 655361, 786433, 1048577, 1572865, 1572867
Offset: 0
Keywords
Examples
a(5) = 17 subsets: {}, {1}, {2}, {3}, {4}, {5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5} and {2, 3, 4, 5}.
Links
- Sebastian Karlsson, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Distinct Prime Factors
Programs
-
Python
from sympy import primefactors def test(n): if n==0: return -1 return len(primefactors(n)) def a(n): tests = [test(i) for i in range(n+1)] return sum(2**tests.count(v)-1 for v in set(tests)) print([a(n) for n in range(43)]) # Michael S. Branicky, Dec 07 2020
Formula
a(n) = 1 + Sum_{k=1..n} 2^A334655(k). - Sebastian Karlsson, Feb 18 2021
Extensions
a(23)-a(42) from Michael S. Branicky, Dec 07 2020