cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339555 Number of subsets of {2..n} such that the product of the elements is a perfect power.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 5, 5, 11, 25, 41, 41, 80, 80, 144, 284, 568, 568, 1147, 1147, 2339, 4667, 8763, 8763, 17548, 35196, 67964, 135918, 273806, 273806, 548956, 548956, 1097974, 2194294, 4291446, 8608698, 17216783, 17216783, 33993999, 67979983, 135956742
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2020

Keywords

Examples

			a(8) = 11 subsets: {}, {4}, {8}, {2, 4}, {2, 8}, {4, 8}, {2, 3, 6}, {2, 4, 8}, {3, 6, 8}, {2, 3, 4, 6} and {3, 4, 6, 8}.
		

Crossrefs

Formula

a(p) = a(p-1) for p prime.

Extensions

a(25)-a(40) from Alois P. Heinz, Dec 08 2020

A377125 Number of subsets of the first n perfect powers whose sum is a perfect power.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 19, 28, 50, 77, 140, 232, 400, 682, 1234, 2153, 3714, 6825, 12125, 22308, 43065, 79407, 151201, 291945, 564267, 1088341, 2135410, 4119306, 7849329, 14826987, 27802222, 51646813, 95519435, 176054349, 327888258, 616082702, 1171710821, 2247355919
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 17 2024

Keywords

Examples

			a(6) = 10 subsets: {1}, {4}, {8}, {9}, {16}, {25}, {1, 8}, {9, 16}, {1, 8, 16} and {8, 16, 25}.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy import perfect_power
    from functools import cache
    def cond(s): return bool(s == 1 or perfect_power(s))
    @cache
    def u(n):
        if n == 1: return 1
        return next(k for k in count(u(n-1)+1) if perfect_power(k))
    @cache
    def b(n, s):
        assert type(s) == int, (n, s)
        if n == 0: return int(cond(s))
        return b(n-1, s) + b(n-1, s+u(n))
    a = lambda n: b(n, 0)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Oct 18 2024

Extensions

a(23) and beyond from Michael S. Branicky, Oct 18 2024
Showing 1-2 of 2 results.