A339558 Number of divisors of 2n that are the average of a pair of twin primes.
0, 1, 1, 1, 0, 3, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 4, 0, 1, 2, 1, 0, 3, 0, 1, 2, 1, 0, 5, 0, 1, 1, 1, 0, 5, 0, 1, 1, 1, 0, 4, 0, 1, 3, 1, 0, 3, 0, 1, 2, 1, 0, 5, 0, 1, 1, 1, 0, 5, 0, 1, 3, 1, 0, 3, 0, 1, 2, 1, 0, 5, 0, 1, 3, 1, 0, 3, 0, 1, 2, 1, 0, 4, 0, 1, 1, 1, 0, 7, 0
Offset: 1
Examples
a(6) = 3; There are 3 divisors of 2*6 = 12 that are the average of twin primes, namely 4, 6 and 12.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) nops(select(t -> isprime(t-1) and isprime(t+1), numtheory:-divisors(2*n))) end proc: map(f, [$1..100]); # Robert Israel, Jan 06 2021
-
Mathematica
Table[Sum[(PrimePi[2n/i + 1] - PrimePi[2n/i]) (PrimePi[2n/i - 1] - PrimePi[2n/i - 2]) (1 - Ceiling[2n/i] + Floor[2n/i]), {i, 2n}], {n, 100}]
-
PARI
a(n) = sumdiv(2*n, d, (d>1) && (bigomega(d^2-1)==2)); \\ Michel Marcus, Dec 16 2020
-
PARI
a(n) = sumdiv(2*n, d, d > 1 && isprime(d-1) && isprime(d+1)); \\ Amiram Eldar, Jun 03 2024
Formula
a(n) = Sum_{d|(2*n)} c(d+1) * c(d-1), where c is the prime characteristic (A010051).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * A241560 = 1.857671... . - Amiram Eldar, Jun 03 2024