A339559 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of distinct parts, i.e., that are not the multiset union of any set of edges.
0, 0, 1, 0, 2, 1, 4, 3, 7, 6, 14, 14, 23, 27, 41, 47, 70, 84, 114, 141, 190, 225, 303, 370, 475, 578, 738, 890, 1131, 1368, 1698, 2058, 2549, 3048, 3759, 4505, 5495, 6574, 7966, 9483, 11450, 13606, 16307, 19351, 23116, 27297, 32470, 38293, 45346, 53342, 62939
Offset: 0
Keywords
Examples
The a(2) = 1 through a(10) = 14 partitions (empty column indicated by dot): 11 . 22 2111 33 2221 44 3222 55 1111 2211 4111 2222 6111 3322 3111 211111 3311 222111 3331 111111 5111 321111 4222 221111 411111 4411 311111 21111111 7111 11111111 222211 322111 331111 421111 511111 22111111 31111111 1111111111 For example, the partition y = (4,4,3,3,2,2,1,1,1,1) can be partitioned into a multiset of edges in just three ways: {{1,2},{1,2},{1,3},{1,4},{3,4}} {{1,2},{1,3},{1,3},{1,4},{2,4}} {{1,2},{1,3},{1,4},{1,4},{2,3}} None of these are strict, so y is counted under a(22).
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A320894 ranks these partitions (using Heinz numbers).
A338915 allows equal pairs (x,x).
A339560 counts the complement in even-length partitions.
A339564 counts factorizations of the same type.
A002100 counts partitions into squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&strs[Times@@Prime/@#]=={}&]],{n,0,15}]
Extensions
More terms from Jinyuan Wang, Feb 14 2025
Comments