cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339572 If n even, a(n) = A000071(n/2+1); if n odd, a(n) = A001610((n-1)/2).

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 6, 7, 10, 12, 17, 20, 28, 33, 46, 54, 75, 88, 122, 143, 198, 232, 321, 376, 520, 609, 842, 986, 1363, 1596, 2206, 2583, 3570, 4180, 5777, 6764, 9348, 10945, 15126, 17710, 24475, 28656, 39602, 46367, 64078, 75024, 103681, 121392, 167760, 196417, 271442
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 2020

Keywords

Comments

Sequences A000071 and A001610 look like long-lost cousins, and this entry smoothly interleaves them. Differences between successive terms are Fibonacci numbers.

Crossrefs

The first differences are essentially A053602.

Programs

  • Mathematica
    Block[{b = {0, 2}, a = {}}, Do[If[EvenQ[i], AppendTo[b, Total@ b[[-2 ;; -1]] + 1 ]; AppendTo[a, Fibonacci[i/2 + 1] - 1], AppendTo[a, b[[(i - 1)/2]]]], {i, 2, 53}]; a] (* Michael De Vlieger, Dec 09 2020 *)
    Table[With[{k=Floor[n/2]},Fibonacci[k+2]+Fibonacci[k]Mod[n,2]-1],{n,0,60}] (* Harvey P. Dale, Jun 24 2025 *)

Formula

a(n) = Fibonacci(k+2) + Fibonacci(k)*(n mod 2) - 1, where k = floor(n/2). - Wesley Ivan Hurt, Dec 09 2020