A339582 Primes p = 8*r-1 such that all the prime factors of r are 7 mod 12.
7, 151, 631, 823, 1063, 1303, 1783, 2647, 2887, 3511, 4423, 4567, 4951, 5527, 6007, 6871, 7351, 7687, 7927, 8311, 9127, 10663, 11383, 11863, 12007, 12343, 12487, 13591, 14071, 15031, 15607, 15991, 16087, 17047, 17191, 17431, 17623, 17911, 19207, 20023, 20407
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- R. K. Guy, editor, Western Number Theory Problems, 1985-12-21 & 23, Typescript, Jul 13 1986, Dept. of Math. and Stat., Univ. Calgary, 11 pages. Annotated scan of pages 1, 3, 7, 9, with permission. See Problem 85:16.
Crossrefs
Subsequence of A007522.
Programs
-
Maple
filter:= n -> isprime(n) and numtheory:-factorset((n+1)/8) mod 12 subset {7}: select(filter, [seq(i,i=7..10^5,8)]); # Robert Israel, Dec 24 2020
-
PARI
isok(p) = if (isprime(p) && (Mod(p, 8)== -1), my(r=(p+1)/8, f=factor(r)[,1]); #select(x->(Mod(x, 12) == 7), f) == #f); \\ Michel Marcus, Dec 24 2020
Extensions
More terms from Michel Marcus, Dec 24 2020, who also added the initial term 7.
Comments