A339613 Number of sets of distinct primes whose sum is a prime, the largest element of a set is prime(n).
1, 2, 2, 2, 5, 8, 15, 30, 57, 115, 211, 398, 783, 1528, 3002, 5893, 11432, 22247, 43663, 86348, 170472, 335636, 662988, 1312816, 2595986, 5121351, 10096635, 19930303, 39469458, 78311512, 155219706, 307373610, 607613871, 1202463562, 2383024521, 4736192475, 9413441133
Offset: 1
Keywords
Examples
a(6) = 8 sets: {13}, {3, 7, 13}, {5, 11, 13}, {7, 11, 13}, {2, 3, 5, 13}, {2, 3, 11, 13}, {2, 5, 11, 13} and {2, 3, 5, 7, 11, 13}.
Programs
-
Python
from sympy import prime, isprime from functools import lru_cache @lru_cache(maxsize=None) def b(n, s, c): if n == 0: if isprime(s): return 1 return 0 return b(n-1, s, c) + b(n-1, s+prime(n), c+1) a = lambda n: b(n-1, prime(n), 1) print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Dec 10 2020
Extensions
a(35)-a(37) from Michael S. Branicky, Dec 09 2020