A339615 Number of nonempty sets of distinct positive integers whose sum of cubes is a cube, the largest integer of a set is n.
1, 1, 1, 1, 2, 1, 1, 3, 1, 6, 5, 9, 10, 25, 32, 51, 97, 144, 244, 463, 767, 1062, 2005, 4177, 5716, 12101, 21526, 35306, 64629, 114871, 205337, 372317, 718410, 1226320, 2361112, 4308192, 7301384, 14615750, 26382095, 47631200, 91388286, 171931627, 302867194, 578843590, 1112232587
Offset: 1
Keywords
Examples
a(13) = 10 sets: {13}, {2, 3, 8, 13}, {4, 8, 11, 12, 13}, {1, 2, 6, 7, 11, 13}, {2, 5, 7, 8, 12, 13}, {3, 4, 8, 10, 11, 12, 13}, {1, 2, 3, 4, 5, 7, 11, 13}, {2, 3, 4, 6, 7, 8, 9, 13}, {1, 2, 5, 6, 7, 8, 9, 10, 12, 13} and {2, 3, 5, 7, 8, 9, 10, 11, 12, 13}.
Programs
-
Python
from functools import lru_cache def perf_cube(n): return round(n**(1/3))**3 ==n @lru_cache(maxsize=None) def b(n, soc, c): if n == 0: if perf_cube(soc): return 1 return 0 return b(n-1, soc, c) + b(n-1, soc+n*n*n, c+1) a = lambda n: b(n-1, n*n*n, 1) print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Dec 10 2020
Extensions
a(24)-a(41) from Michael S. Branicky, Dec 10 2020
a(42)-a(45) from Alois P. Heinz, Dec 11 2020