A339622 Number of Hamiltonian circuits within parallelograms of size 7 X n on the triangular lattice.
1, 498, 26499, 1475286, 100766213, 6523266332, 418172485806, 26971800950170, 1738936046774850, 112060168171247368, 7222422644817870197, 465494892350086836970, 30001329862709920944426, 1933604967243463575726934, 124622105764386987040047037, 8031972575008760516889720476
Offset: 2
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 2..150
- Olga Bodroža-Pantić, Harris Kwong and Milan Pantić, Some new characterizations of Hamiltonian cycles in triangular grid graphs, Discrete Appl. Math. 201 (2016) 1-13. (a(n) is equal to h6(n-1) defined by this paper)
- M. Peto, Studies of protein designability using reduced models, Thesis, 2007.
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_T_nk(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) if i < k: grids.append((i + (j - 1) * k, i + j * k + 1)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) return grids def A339849(n, k): universe = make_T_nk(n, k) GraphSet.set_universe(universe) cycles = GraphSet.cycles(is_hamilton=True) return cycles.len() def A339622(n): return A339849(7, n) print([A339622(n) for n in range(2, 8)])